[1] P. R. Murphy, N. Wilming, D. C. Hernandez-Bocanegra, G. Prat-Ortega, and T. H. Donner, “Adaptive circuit dynamics across human cortex during evidence accumulation in changing environments,” Nature Neuroscience, pp. 1-11, 2021.
[2] M. Sarafyazd, and M. Jazayeri, “Hierarchical reasoning by neural circuits in the frontal cortex,” Science, vol. 364, no. 6441, 2019.
[3] D. Peixoto, J. R. Verhein, R. Kiani, J. C. Kao, P. Nuyujukian, C. Chandrasekaran, J. Brown, S. Fong, S. I. Ryu, and K. V. Shenoy, “Decoding and perturbing decision states in real time,” Nature, vol. 591, no. 7851, pp. 604-609, 2021.
[4] G. M. Stine, A. Zylberberg, J. Ditterich, and M. N. Shadlen, “Differentiating between integration and non-integration strategies in perceptual decision making,” Elife, vol. 9, pp. e55365, 2020.
[5] G. Kyriakarakos, K. Patlitzianas, M. Damasiotis, and D. Papastefanakis, “A fuzzy cognitive maps decision support system for renewables local planning,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 209-222, 2014.
[6] J. L. Salmeron, A. Ruiz-Celma, and A. Mena, “Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes,” Neurocomputing, vol. 232, pp. 52-57, 2017.
[7] L. Yahyaie, and S. Khanmohammadi, “A new multi-criteria decision making based on fuzzy-TOPSIS theory,” Journal of Advances in Computer Engineering and Technology, vol. 2, no. 4, pp. 39-48, 2016.
[8] E. Daglarli, “Computational Modeling of Prefrontal Cortex for Meta-Cognition of a Humanoid Robot,” IEEE Access, vol. 8, pp. 98491-98507, 2020.
[9] K. H. Britten, M. N. Shadlen, W. T. Newsome, and J. A. Movshon, “The analysis of visual motion: a comparison of neuronal and psychophysical performance,” Journal of Neuroscience, vol. 12, no. 12, pp. 4745-4765, 1992.
[10] M. N. Shadlen, and W. T. Newsome, “Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey,” Journal of neurophysiology, vol. 86, no. 4, pp. 1916-1936, 2001.
[11] L. Van Maanen, R. P. Grasman, B. U. Forstmann, M. C. Keuken, S. D. Brown, and E.-J. Wagenmakers, “Similarity and number of alternatives in the random-dot motion paradigm,” Attention, Perception, & Psychophysics, vol. 74, no. 4, pp. 739-753, 2012.
[12] C. Strauch, L. Greiter, and A. Huckauf, “Pupil dilation but not microsaccade rate robustly reveals decision formation,” Scientific reports, vol. 8, no. 1, pp. 1-9, 2018.
[13] A. Mognon, J. Jovicich, L. Bruzzone, and M. Buiatti, “ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features,” Psychophysiology, vol. 48, no. 2, pp. 229-240, 2011.
[14] J. A. Lorteije, A. Zylberberg, B. G. Ouellette, C. I. De Zeeuw, M. Sigman, and P. R. Roelfsema, “The formation of hierarchical decisions in the visual cortex,” Neuron, vol. 87, no. 6, pp. 1344-1356, 2015.
[15] R. Van den Berg, A. Zylberberg, R. Kiani, M. N. Shadlen, and D. M. Wolpert, “Confidence is the bridge between multi-stage decisions,” Current Biology, vol. 26, no. 23, pp. 3157-3168, 2016.
[16] S. V. Shooshtari, J. E. Sadrabadi, Z. Azizi, and R. Ebrahimpour, “Confidence representation of perceptual decision by eeg and eye data in a random dot motion task,” Neuroscience, vol. 406, pp. 510-527, 2019.
[17] A. Zylberberg, J. A. Lorteije, B. G. Ouellette, C. I. De Zeeuw, M. Sigman, and P. Roelfsema, “Serial, parallel and hierarchical decision making in primates,” Elife, vol. 6, pp. e17331, 2017.
[18] J. A. Reggia, G. E. Katz, and G. P. Davis, “Humanoid cognitive robots that learn by imitating: Implications for consciousness studies,” Frontiers in Robotics and AI, vol. 5, pp. 1, 2018.
[19] S. Fatahi, and H. Moradi, “A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments,” Computers in Human Behavior, vol. 63, pp. 272-281, 2016.
[20] E. Lesage, S. E. Aronson, M. T. Sutherland, T. J. Ross, B. J. Salmeron, and E. A. Stein, “Neural signatures of cognitive flexibility and reward sensitivity following nicotinic receptor stimulation in dependent smokers: a randomized trial,” JAMA psychiatry, vol. 74, no. 6, pp. 632-640, 2017.
[21] B. A. Purcell, and R. Kiani, “Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy,” Proceedings of the national academy of sciences, vol. 113, no. 31, pp. E4531-E4540, 2016.
[22] W. Keung, T. A. Hagen, and R. C. Wilson, “Regulation of evidence accumulation by pupil-linked arousal processes,” Nature Human Behaviour, vol. 3, no. 6, pp. 636-645, 2019.
[23] J. C. Van Slooten, S. Jahfari, T. Knapen, and J. Theeuwes, “How pupil responses track value-based decision-making during and after reinforcement learning,” PLoS computational biology, vol. 14, no. 11, pp. e1006632, 2018.
[24] O. Colizoli, J. W. de Gee, A. E. Urai, and T. H. Donner, “Task-evoked pupil responses reflect internal belief states,” Scientific reports, vol. 8, no. 1, pp. 1-13, 2018.
[25] L. C. Yan, B. Yoshua, and H. Geoffrey, “Deep learning,” nature, vol. 521, no. 7553, pp. 436-444, 2015.
[26] X.-J. Wang, “Probabilistic decision making by slow reverberation in cortical circuits,” Neuron, vol. 36, no. 5, pp. 955-968, 2002.
[27] K.-F. Wong, and X.-J. Wang, “A recurrent network mechanism of time integration in perceptual decisions,” Journal of Neuroscience, vol. 26, no. 4, pp. 1314-1328, 2006.
[28] D. Vickers, “Evidence for an accumulator model of psychophysical discrimination,” Ergonomics, vol. 13, no. 1, pp. 37-58, 1970.
[29] R. Ratcliff, “A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data,” Psychonomic bulletin & review, vol. 9, no. 2, pp. 278-291, 2002.
[30] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen, “The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks,” Psychological review, vol. 113, no. 4, pp. 700, 2006.
[31] F. Majdabadi, and R. Ebrahimpour, “The role of explicit and implicit confidence in multi-stage decisions,”
Advances in Cognitive Science, pp. 37, 2020.
[32] S. Vafaei, R. Ebrahimpour, and S. Zabbah, “The Relationship Between Pupil Diameter Data and Confidence in Multi-Stage Decisions,” The Neuroscience Journal of Shefaye Khatam, pp. 70-79, 2020.
]33 [ حسنپور خ, سیدعربی م, دانشور س. کنترل صندلی چرخدار بر پایه سیگنالهای EEG به وسیله واسط مغز و ماشین. پردازش سیگنال پیشرفته. 2017;2(1):7-15.
]34 [ مقدری م, زلفی لیقوان م, دانشور س. تشخیص تصور گفتار کلمات بازی سنگ، کاغذ، قیچی با استفاده از سیگنال های EEG. پردازش سیگنال پیشرفته. 2021:-.
[35] R. Kiani, and M. N. Shadlen, “Representation of confidence associated with a decision by neurons in the parietal cortex,” science, vol. 324, no. 5928, pp. 759-764, 2009.
[36] A. E. Urai, A. Braun, and T. H. Donner, "Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias," Nature Communications, vol. 8, no. 1, pp. 1-11, 2017.
[37] K. M. Lempert, Y. L. Chen, and S. M. Fleming, "Relating pupil dilation and metacognitive confidence during auditory decision-making," PLoS One, vol. 10, no. 5, p. e0126588, 2015.
[ 38] A. L. Filipowicz, C. M. Glaze, J. W. Kable, and J. I. Gold, "Pupil diameter encodes the idiosyncratic, cognitive complexity of belief updating," Elife, vol. 9, p. e57872, 2020.