آشکارساز CFAR در حضور لبه کلاتر با استفاده از تبدیل موجک ایستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یزد - دانشکده مهندسی برق

2 دانشگاه شهید باهنر کرمان - بخش مهندسی برق - دانشکده فنی و مهندسی

چکیده

در این مقاله یک آشکارساز با نرخ هشدار کاذب ثابت (CFAR) بر مبنای تبدیل موجک ایستان شامل بخش آشکارساز مکان لبه و پردازنده CA-CFAR در حضور لبه کلاتر ارائه شده است. آشکارساز پیشنهادی نیازی به اطلاع پیشین از محیط ندارد. این آشکارساز از تبدیل موجک برای تشخیص لبه استفاده نموده و سپس سلول‌های مرجع مناسب را برای تعیین سطح آستانه انتخاب می‌کند. اگرچه در محیط‌های همگن آشکارساز CA-CFAR یک آشکارساز بهینه است اما در محیط‌های غیر همگن دارای افت عملکرد زیادی است. عملکرد آشکارساز پیشنهادی با آشکارسازهای CA-CFAR،  GO-CFAR و SO-CFAR مقایسه می‌شود. نتایج شبیه‌سازی نشان می‌دهد که آشکارسازی پیشنهادی در محیط همگن عملکردی نزدیک به CA-CFAR  دارد.  لبه کلاتر می‌تواند قبل یا بعد سلول تحت تست باشد. اگر مکان لبه قبل از سلول تحت تست باشد عملکردی نزدیک به SO-CFAR خواهد داشت و در صورتی که مکان لبه بعد از سلول تحت تست باشد عملکرد آن نزدیک GO-CFAR است.

کلیدواژه‌ها


عنوان مقاله [English]

CFAR Detector in Clutter Edge Situation Using Stationary Wavelet Transform

نویسندگان [English]

  • Hamid Saeedi-Sourck 1
  • Abbas Berizi 1
  • Amir Zaimbashi 2
1 Department of Electrical Engineering, Yazd University
2 Department of Engineering, Shahid Bahonar University of Kerman
چکیده [English]

In this paper, a new wavelet-based constant false alarm rate (CFAR) detector  called wavelet-CFAR (W-CFAR), composed of the clutter edge detector and the cell-averaging (CA)-CFAR processor, is proposed in the clutter edge situation. The proposed detector does not require any prior knowledge about the background environment. It uses wavelet transform for edge detection and then selects appropriate part of reference cells for thresholding. Although CA-CFAR is an optimal detector for the homogeneous environment, but its performance is degraded in the non-homogeneous environment. The performance of the proposed detector is evaluated and compared with those of the Greatest Of (GO), Smallest Of (SO), and CA-CFAR detectors. The simulation results show that the proposed detector provides low loss CFAR performance for the homogenous environment in comparison with CA-CFAR. The clutter edge may be stayed on before or after cell under test (CUT). The performance of W-CFAR approaches to SO-CFAR as long as the position of clutter edge is before CUT; otherwise its performance approaches to GO-CFAR.

کلیدواژه‌ها [English]

  • Radar
  • detection
  • CFAR
  • clutter edge
  • wavelet transform
[1] H. Rohling, "Radar CFAR thresholding in clutter and multiple target situations," IEEE transactions on aerospace and electronic systems, pp. 608-621, 1983
[2] H. Finn and R. Johnson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter- level estimates (Adaptive detection mode for surveillance radar, using detection threshold proportional to spatially sampled clutter level estimates for regulation of false alarm probability)," RCA review, vol. 29, pp. 414-464, 1968
[3] M. Weiss, "Analysis of some modified cell-averaging CFAR processors in multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, pp. 102-114, 1982
[4] P. P. Gandhi and S. A. Kassam, "Analysis of CFAR processors in homogeneous background," IEEE Transactions on Aerospace and Electronic Systems, vol. 24, pp. 427-445, 1988
[5] A. R. Elias-Fuste, M. G. G. de Mercado, and E. de Los Reyes Davo, "Analysis of some modified ordered statistic CFAR: OSGO and OSSO CFAR," IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 197-202, 1990
[6] A. Zaimbashi, M. R. Taban, M. M. Nayebi, and Y. Norouzi, "Weighted order statistic and fuzzy rules CFAR detector for Weibull clutter," Signal processing, vol. 88, pp. 558-570, 2008
[7] S. D. Himonas and M. Barkat, "Automatic censored CFAR detection for nonhomogeneous environments," IEEE Transactions on Aerospace and Electronic systems, vol. 28, pp. 286-304, 1992
[8] A. Farrouki and M. Barkat, "Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments," IEE Proceedings-Radar, Sonar and Navigation, vol. 152, pp. 43-51, 2005
[9] T. Jian, G. Liao, Y. He and J. Shen, "A CFAR detector based on orthogonal wavelet transform," 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, 2014, pp. 1963-1967.
[10] S. M. Alamdari, M. Modarres-Hashemi, "An improved CFAR detector using wavelet shrinkage in multiple target environments, " in IEEE 9th International Symposium on Signal Processing and Its Applications, 2007.
[11] Y. Dong, "A wavelet smoothing CFAR processor," in IEEE International Conference on Radar, 2008.
[12] L. Xiaoming, S. Jidong, L. Renjie, W. Xin, "The Radar Clutter Processor with wavelet floating threshold", in IEEE international conf. on Radar proceedings, 2001.
[13] R. Ravid and N. Levanon, "Maximum-likelihood CFAR for Weibull background," in IEE Proceedings F-Radar and Signal Processing, 1992, pp. 256-264
[14] S. Mallat, A wavelet tour of signal processing: Academic press, 1999
[15] S. Mallat and W. Hwang, “Singularity detection & processing with wavelets,” IEEE Trans. Information Theory, vol. 38, pp. 617–643, 1992.
[16] B. M. Sadler and A. Swami, “Analysis of multiscale products for step detection and estimation,” IEEE Trans. Information Theory, vol.45, no. 3, pp. 1043–1051, 1999.
[17] G. P. Nason and B. W. Silverman, "The stationary wavelet transform and some statistical applications," in Wavelets and statistics, ed: Springer, 1995, pp. 281-299
[18] Y. Zeng, Y. C. Liang and M. W. Chia, "Edge based wideband sensing for cognitive radio: algorithm and performance evaluation," in IEEE Symp. Dynamic Spectrum Access Networks (DySPAN), pp. 538-544, 2011.