کنترل صندلی چرخ‌دار بر پایه سیگنال‌های EEG به‌وسیله واسط مغز و ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تبریز - دانشکده مهندسی برق و کامپیوتر

چکیده

چالش اصلی سیستم‌های واسط مغز و ماشین (BCI) دوکلاسه، پایین بودن پهنای باند کانال ارتباطی آن‌ها است. مخصوصاً این مسئله برای کنترل دستگاه‌های کمکی شبیه صندلی چرخ‌دار یا ربات متحرک که نیازمند دستورات حرکتی چندگانه هستند، مهم است.  
هدف این تحقیق، کنترل کردن صندلی چرخ‌دار توسط سیستم واسط مغز و ماشین با استفاده از سیگنال‌های (EEG) مبتنی بر الگوهای ذهنی (SSVEP) است. این کنترل ذهنی باید مخصوصاً برای افراد ناتوان امنیت بالا و دقت قابل قبولی داشته باشد. سیگنال ذهنی SSVEP پنجره‌گذاری می‌شود و سپس در مرحله پیش‌پردازش برای کاهش نویز و مصنوعات از یک فیلتر میان‌گذر عبور داده می‌شود.استخراج ویژگی از سه روش (FFT)، (IT-CCA) و روش بهبودیافته مبتنی بر ترکیب IT-CCA و فیلتربانک انجام می‌شود. محاسبه دقت و نرخ انتقال اطلاعات هر سه روش نشان می‌دهد که روش بهبودیافته مبتنی بر ترکیب IT-CCA و فیلتربانک بهترین عملکرد را دارد. در پایان صندلی چرخ‌دار و محیط فیزیکی آن در نرم‌افزار شبیه‌سازی ربات Webots طراحی و با ارسال و اجرای دستورات دوازده‌گانه مانور حرکتی صندلی چرخ‌دار بررسی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

EEG-Based Wheelchair Control Through a Brain–Computer Interface

نویسندگان [English]

  • Khadijeh Hassanpour
  • Hadi Seyadarabi
  • Sabalan Daneshvar
Faculty of Electrical and Computer Engineering, University of Tabriz
چکیده [English]

A major challenge in two-class brain-computer interface (BCI) systems is the low bandwidth of the communication channel, especially this is important for controlling assistive devices such as a wheelchair or a mobile robot which requires multiple motion commands. The goal of this research is EEG-based wheelchair control through a SSVEP-based BCI. This brain control must provide high security and accuracy particularly for disabled people. SSVEP brain signal is windowed and for reducing noise and artifacts passed through a bandpass filter in preprocessing stage. Three methods including FFT algorithm, IT-CCA and an improved method based on combination of IT-CCA and Filter-bank are used for feature extraction. Computing Accuracy and ITR for three methods represents that improved method based on combination of IT-CCA and Filter-bank has the best performance. Finally the wheelchair and its physical environment are designed by Webots robotic simulation software and by sending and performing multiple commands, wheelchair motivation maneuver is completed.

کلیدواژه‌ها [English]

  • Brain-computer interface (BCI)
  • Electroencephalography (EEG)
  • steady state visual evoked potential (SSVEP)
  • brain-controlled mobile robot
  • wheelchair
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan, " Brain–computer interfaces for communication and control," Clin. Neurophysiology, Year: 2002, Volume: 113, Pages: 767-791.
[2] M. Teplan. "Fundamentals of EEG Measurement," Measurement Science Review, Volume 2, Section 2, 2002 , Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
[3] B. Graimann, B. Allison, G. Pfurtscheller, "Brain–Computer Interfaces," Editors Revolutionizing Human–Computer Interaction123, © Springer-Verlag Berlin Heidelberg 2010, Springer Heidelberg Dordrecht London New York, Library of Congress Control Number: 2010934515.
[4] E. Donchin, K. M. Spencer, and R. Wijesinghe, “The mental prosthesis: assessing the speed of a P300-based brain–computer interface,” IEEE Trans. Neural Syst. Rehabil. Eng., Jun. 2000, vol. 8, no. 2, pp. 174–179.
[5] L. A. Farwell and E. Donchin, “Talking off the top of your head: Toward a mental prosthesis utilizing event related brain potentials,” Clin. Neurophysiol., Dec. 1988, vol. 70, no. 6, pp. 510–523.
[6] E. E. Sutter, “The brain response interface: Communication through visually-induced electrical brain response,” J. Microcomput. Appl.,Year: Jan. 1992, vol. 15, no. 1, pp. 31–45.
[7] X. Gao, D. Xu, M. Cheng, and S. Gao, “A BCI-based environmental controller for the motion-disabled,” IEEE Trans. Neural Syst. Rehabil. Eng,Year: Jun. 2003, vol. 11, no. 2, pp. 137–140.
[8] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. H. Lopes da Silva, "Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks," NeuroImage, Year: 2006, vol. 31, pp. 153-159.
[9] S. M. Grigorescu, T. L¨uth, C. Fragkopoulos, M. Cyriacks and A. Gr¨aser, “A BCI controlled robotic assistant for quadriplegic people in domestic and professional life,” Robotica, Year: 2011, vol. 30, no. 3, pp. 419–431.
[10] H. Cecotti and A. Graser, “Convolutional neural networks for P300 detection with application to brain–computer interfaces,” IEEE Trans. Pattern Anal. Mach. Intell., Year: Mar. 2011, vol. 33, no. 3, pp. 433–445.
[11] J. d. R. Mill´an, F. Renkens, J. Mouri˜no, and W. Gerstner, “Noninvasive brain-actuated control of a mobile robot by human EEG,” IEEE Trans. Bio. Eng., Year: Jun. 2004, vol. 51, no. 6, pp. 1026–1033.
[12] K. Tanaka, K. Matsunaga and H. O. Wang, “Electroencephalogram-based control of an electric wheelchair,” IEEE Trans. Robot., Year: Aug. 2005, vol. 21, no. 4, pp. 762–766.
[13] K. Choi and A. Cichocki, “Control of a wheelchair by motor imagery in real time,” in Proc. 9th Int. Conf. Intell. Data Eng. Autom. Learning, Year: 2008, pp. 330–337.
[14] K. Choi, “Control of a vehicle with EEG signals in real-time and system evaluation,” Eur. J. Appl. Physiol., Year: v, vol. 112, no. 2, pp. 755–766.
[15] W. Song, X. Wang, S. Zheng, Y .Lin, "Mobile Robot Control by BCI Based on Motor Imagery," Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on, Year: 2014, Volume: 2, Pages: 383 – 387.
[16] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C.L. Teo, Q. Zeng, M. Ang,and C. Laugier, “A brain controlled wheelchair based on P300 and path guidance,” in Proc. IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, Year: 2006, pp. 1001–1006.
[17] G. Pires, M. Castelo-Branco, and U. Nunes, “Visual P300-based BCI to steer a wheelchair: A Bayesian approach,” in Proc. IEEE Eng. Med. Biol. Soc., Year: 2008, pp. 658–661.
[18] C. Mandel, T. Luth, T. Laue, T. Rofer, A. Graser, and B. Krieg-Bruckner, “Navigating a smart wheelchair with a brain–computer interface interpreting steady-state visual evoked potentials,” in Proc. Conf. Rec. 2009 IEEE/RSJ Int. Conf. Intell. Robots Syst., St. Louis, MO, pp. 1118–1125.
[19] M. Chung,W. Cheung, R. Scherer, and R. P. N. Rao, “Towards hierarchical BCls for robotic control,” in Proc. Conf. Rec. 2011 IEEE/EMBS 5th Int. Conf. Neural Eng, Cancun, Mexico, Apr./May 2011, pp. 330–333.
[20] P. L. Lee, H. C. Chang, T. Y. Hsieh, H. T. Deng, and C. W. Sun, “A brain-wave-actuated small robot car using ensemble empirical mode decomposition-based approach,” IEEE Trans. Syst., Man, Cybern. A: Syst. Humans, Year: Sep. 2012, vol. 40, no. 5, pp. 1053–1064.
[21] A. Widyotriatmo, Suprijanto; S. Andronicus, "A collaborative control of brain computer interface and robotic wheelchair," Control Conference (ASCC), Year: 2015, 10th Asian, Year: 2015, Pages: 1 – 6.
[22] M. Nakanishi, Y. Wang, Y. T. Wang, T. P. Jung, "A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked," plos journals, Year: 2015.
[23] R. Jenke, A. Peer, M. Buss, "Feature Extraction and Selection for Emotion Recognition from EEG," IEEE Transactions on Affective Computing, Year: 2014, Volume: 5, Issue: 3, Pages: 327 – 339.
[24] Z. Lin, C. Zhang, W. Wu, X. Gao, "Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs," IEEE Transactions on Biomedical Engineering, Year: 2007, Volume: 54, Issue: 6, Pages: 1172 –1176.