تخصیص توزیع‌شده فروسو و فراسوی منابع در ارتباط دستگاه به دستگاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در سامانه‌های سلولی کنونی، عملکرد دستگاه کاربران موجود در مرز سلول به دلیل کیفیت ضعیف ارتباط، آسیب می‌بیند. حال‌ آنکه این ارتباطات به تعداد بیشتری بلوک منابع و توان انتقالی نیز نیاز دارد. برای کاهش تعداد بلوک‌های فرکانسی و توان انتقالی، این مقاله به بررسی ارتباط دستگاه به دستگاه در حالت‌های فروسو و فراسوی سامانه‌های مخابرات سلولی می‌پردازد. به‌منظور بهینه‌سازی اتصال کاربران مختلف در شبکه به معنای یافتن بهترین ارتباط (کم‌ترین میزان توان مصرفی) یک کاربر با ایستگاه پایه که ممکن است از طریق ارتباط با کاربران دیگر و یا ارتباط مستقیم با ایستگاه پایه برقرار شود و با هدف کمینه‌ کردن کل توان انتقال‌یافته، از روش‌های بهینه‌سازی متفاوتی مانند بهینه‌سازی جستجوی گرانشی، بهینه‌سازی ازدحام ذرات، بهینه‌سازی وراثتی و راهبرد توزیع‌شده مبتنی بر یادگیری Q با استفاده از تصمیم‌گیری بیشینه هموار بهره گرفته می‌شود. نتایج عددی کاهش توان حدود 30 درصد را برای این ارتباطات با پیچیدگی محاسباتی کمتر با استفاده از روش یادگیری Q نسبت به حالتی که به‌طور مرسوم تمام کاربران اتصال خود را از طریق ایستگاه پایه و به‌صورت متمرکز با پیچیدگی محاسباتی بالا برقرار می‌سازند، بیان می‌دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Distributed Downlink and Uplink Resource Allocation in D2D Communication

نویسندگان [English]

  • Mahsa Mohammadrezaei 1
  • Ehsan Soleimani Nasab 2
  • Esmat Rashedi 1
1 Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
2 Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

In current cellular systems, the performance of active users' devices at the cell edge suffers from the poor link quality. However, these connections also requires more resource blocks and transmission power. In order to reduce the number of resource blocks and transmission power, this paper discusses device to device communication in downlink and uplink cases of cellular communication systems. In order to optimize the connections of different network users, which means finding the best user’s connection to a base station (minimum power consumption), which may be established through communication with other users or direct connection with the base station, and to minimize the total transmission power, different optimization methods such as gravitational search optimization, particle swarm optimization, genetic optimization algorithm and distributed strategy based on Q learning and softmax decision making methods are used. The numerical results show a power reduction of around 30 percent for these distributed communications with less computational complexity using the Q learning method compared to the case in which all users traditionally connect through the base station in a centralized way with high computational complexity.

کلیدواژه‌ها [English]

  • Distributed resource allocation
  • downlink and uplink
  • device-to-device communication
  • Gravitational Search Algorithm
  • Q learning
[1]           B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, "Networks and devices for the 5G era," IEEE Communications Magazine, vol. 52, no. 2, pp. 90-96, February 2014.
[2]           A. Torabzadeh, M. Majidi, and M. Baghani, "Energy efficiency improvement in dynamic orthogonal and non-orthogonal multiple access uplink networks," Journal of Advanced Signal Processing, vol. 4, no. 1, pp. 17-27, 2020.
[3]           G. Fodor, S. Parkvall, S. Sorrentino, P. Wallentin, Q. Lu, and N. Brahmi, "Device-to-device communications for national security and public safety," IEEE Access, vol. 2, pp. 1510-1520, 2014.
[4]           J. P. Munson and V. K. Gupta, "Location-based notification as a general-purpose service," in Proceedings of the 2nd international workshop on Mobile commerce, September 2002, pp. 40-44.
[5]           P. K. Mishra, S. Pandey, and S. K. Biswash, "Efficient resource management by exploiting D2D communication for 5G networks," IEEE Access, vol. 4, pp. 9910-9922, 2016.
[6]           L. Wei, R. Q. Hu, Y. Qian, and G. Wu, "Enable device-to-device communications underlaying cellular networks: challenges and research aspects," IEEE Communications Magazine, vol. 52, no. 6, pp. 90-96, June 2014.
[7]           J. Pérez-Romero, J. Sánchez-González, R. Agustí, B. Lorenzo, and S. Glisic, "Power-efficient resource allocation in a heterogeneous network with cellular and D2D capabilities," IEEE Transactions on Vehicular Technology, vol. 65, no. 11, pp. 9272-9286, November 2016.
[8]           P. Phunchongharn, E. Hossain, and D. I. Kim, "Resource allocation for device-to-device communications underlaying LTE-advanced networks," IEEE wireless communications, vol. 20, no. 4, pp. 91-100, September 2013.
[9]           S. Jayakumar and S. Nandakumar, "A review on resource allocation techniques in D2D communication for 5G and B5G technology," Peer-to-Peer Networking and Applications, vol. 14, no. 1, pp. 243-269, 2021.
[10]         C.H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, "Resource sharing optimization for device-to-device communication underlaying cellular networks," IEEE Transactions on Wireless communications, vol. 10, no. 8, pp. 2752-2763, June 2011.
[11]         Y. Xu, G. Gui, H. Gacanin, and F. Adachi, "A survey on resource allocation for 5G heterogeneous networks: Current research, future trends and challenges," IEEE Communications Surveys & Tutorials, February 2021.
[12]         S. T. Shah, J. Gu, S. F. Hasan, and M. Y. Chung, "SC-FDMA-based resource allocation and power control scheme for D2D communication using LTE-A uplink resource," EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1, pp. 1-15, May 2015.
[13]         L. Militano, A. Orsino, G. Araniti, A. Molinaro, A. Iera, and L. Wang, "Efficient spectrum management exploiting D2D communication in 5G systems," in 2015 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, August 2015: IEEE, pp. 1-5.
[14]         A. Bagheri and M. Mohammadi, "Optimal power allocation in multipair full-duplex relaying massive MIMO networks in presence of eavesdropper," Journal of Advanced Signal Processing, vol. 4, no. 1, pp. 1-15, 2020.
[15]         R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, November 2018.
[16]         L. Davis, Handbook of Genetic Algorithms. VNR Computer Library. Stamford, CT, ed: USA: Thomson Publishing Group, Inc. and New York, NY, USA: Van Nostrand …, 1991.
[17]         Y. Zhang, S. Wang, and G. Ji, "A comprehensive survey on particle swarm optimization algorithm and its applications," Mathematical problems in engineering, vol. 2015, February 2015.
[18]         E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm," Information sciences, vol. 179, no. 13, pp. 2232-2248, June 2009.
[19]         R. Kuo and Y. Han, "A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem–A case study on supply chain model," Applied Mathematical Modelling, vol. 35, no. 8, pp. 3905-3917, August 2011.