تشخیص سرطان سینه از روی ریزدانه‌های کلسیم در تصویر ماموگرافی به کمک خوشه‌بندی فازی و شبکه های عصبی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق- واحد نجف‌آباد، دانشگاه آزاد اسلامی - نجف‌آباد - ایران

چکیده

تشخیص ریزدانه‌های کلسیم در تصاویر ماموگرافی سینه در تشخیص زودهنگام سرطان از اهمیت زیادی برخوردار‌است. شناسایی این ریزدانه‌ها به‌طور دستی و توسط افراد متخصص انجام می‌گیرد که با هزینه بالا و خطا همراه است. در این مقاله یک روش جدید مبتنی بر الگوریتم خوشه‌بندی فازی برای شناسایی ریزدانه در تصاویر ماموگرافی پیشنهاد شده است. در روش پیشنهادی کیفیت پایین تصاویر ماموگرافی به کمک پیش‌پردازش بهبود داده ‌می‌شود. با تعریف یک تابع عضویت مناسب در خوشه‌بندی فازی، نواحی ریزدانه شناسایی ‌شده‌اند. دقت و حساسیت ناحیه مطلوب دارای ریزدانه شناسایی‌شده با ناحیه‌ای که توسط پزشک استخراج‌شده مقایسه شده است. دقت شناسایی ناحیه مطلوب 79/96 درصد و حساسیت این شناسایی 20/97 درصد به‌دست‌ آمده است که نسبت به روش قبلی دقت و حساسیت شناسایی ریزدانه بهبود پیدا کرده است (دقت شناسایی ناحیه مطلوب 95 در صد و حساسیت 52/90 در صد). در ادامه به کمک شبکه عصبی انتشار به جلو با الگوریتم آموزشی پس انتشار خطا، به طبقه‌بندی نواحی استخراج‌شده به دو دسته خوش‌خیم و بدخیم پرداخته‌شده است. معیارهای دقت شناسایی، حساسیت، نرخ اخباری مثبت و منفی برای ارزیابی دقت تشخیص خوش‌خیم و بدخیم بودن ریزدانه به کار گرفته شد. دقت شناسایی 50/97 درصد، حساسیت 13/98 درصد، نرخ اخباری مثبت 30/98 درصد و منفی 32/96 درصد، بیان‌کننده نتایج مطلوب از روش پیشنهادی در این مقاله است. دلیل برتری روش پیشنهادی دقت بالا در استخراج ناحیه مورد نظر و همچنین ویژگی های متمایز استخراج شده از ناحیه مورد نظر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detection of Breast Cancer from Calcium Particles in Mammography Using Fuzzy Clustering and Neural Networks

نویسندگان [English]

  • Shima Zarrabi Baboldasht
  • Neda Behzadfar
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]

Detection of calcium particles in breast mammography images is important in the early detection of cancer. Identification of these particles is done manually by experts, which is associated with high cost and error. In this paper, a new method based on fuzzy clustering algorithm for fine-grained detection in mammographic images is proposed. In the proposed method, the low quality of mammographic images is improved with the help of preprocessing. By defining an appropriate membership function in fuzzy clustering, fine-grained regions are identified. Finally, the identified areas were classified into benign and malignant groups with the help of forward propagation neural network with error propagation training algorithm. The accuracy of identification of the desired area is 96.79% and the sensitivity of this identification is 97.20%. Compared to the previous method, the accuracy and sensitivity of fine-grained identification has been improved (95% of the desired area identification accuracy and 90.52% sensitivity).  In the classification of areas with the help of neural network, the accuracy was 97.5%. Evaluation criteria showed the superiority of the proposed method in the extraction of calcium particles and classification. The reason for the superiority of the proposed method is the high accuracy in extracting the desired area as well as the distinctive features extracted from the desired area.

کلیدواژه‌ها [English]

  • Microcalsiom
  • breast cancer
  • Mammogram images
  • Fuzzy clustering
  • classification
  • feature extraction
  1. جهان­دیده رستم­علی، بهنام حمید، احمدی­نژاد نسرین، "طبقه‌بندی توده‌های سرطانی سینه با استفاده از ویژگی‌های ریخت‌شناسی توده و ویژگی‌های بافتی تصاویر سونوگرافی در ناحیه دارای توده و نواحی اطراف آن"، نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال: 6، ش.: 3، ص.: 247، 253، پاییز 1387.
  2. خدادای الناز، حسینی راحیل، مزینانی مهدی، "ارائه‌ مدل‌های محاسبات نرم مبتنی بر فازی، تکاملی و هوش جمعی در تحلیل تصاویر ماموگرافی جهت تشخیص تومور‌های سینه"، پردازش علائم و داده‌ها، سال: 16، ش.: 2، ص.: 147-165، 1398.
  3. Hemmasian Etefagh M.H. Nadimi Shahraki, “Comparison and evaluation of synthesis of risk factors in breast cancer and provide a model for determine the likelihood of developing breast cancer using by EM algorithm in data mining techniques”, Iranian Journal of Breast Diseases, vol. 9, no. 1, pp. 21-30, 2016.
  4. Gayathri, C. Sumathi, and T. Santhanam, "Breast cancer diagnosis using machine learning algorithmsa survey”, International Journal of Distributed and Parallel Systems, vol. 4, no. 3, p. 105, 2013.
  5. S. Croock, S. D. Khuder, A. E. Korial, and S. S. Mahmmod, "Early detection of breast cancer using mammography images and software engineering process", TELKOMNIKA, vol. 18, no. 4, pp. 1784-1794, 2020.
  6. Songsaeng, P. Woodtichartpreecha, S. Chaichulee, "Multi-scale convolutional neural networks for classification of digital mammograms with breast calcifications", IEEE Access, vol. 9, pp. 114741-114753, 2021.
  7. Loizidou, G. Skouroumouni, C. Nikolaou, C. Pitris, "An automated breast micro-calcification detection and classification technique using temporal subtraction of mammograms", IEEE Access, vol. 8, pp. 52785-52795, 2020.
  8. Touami, K. Karima, and N. Benamrane, "Detection of microcalcifications on mammograms”, International Journal of Software Science and Computational Intelligence, vol. 12, no. 1, pp. 68-79, 2020.
  9. Dehghan, A. Salimi, “Automatic prostate segmentation in ultrasound images using GVF active contour”, Majlesi Journal of Electrical Engineering, vol. 8, no. 1, pp. 19-26, 2013.
  10. Basile et al., "Microcalcification detection in full-field digital mammograms: A fully automated computer-aided system”, Physica Medica, vol. 64, pp. 1-9, 2019.
  11. J. S. Gardezi, A. Elazab, B. Lei, and T. Wang, "Breast cancer detection and diagnosis using mammographic data: systematic review”, Journal of Medical Internet Research, vol. 21, no. 7, Article Number: e14464, 2019.
  12. L. A. Hernández, T. T. Estrada, A. L. Pizarro, M. L. D. Cisternas, and C. S. Tapia, "Breast calcifica‌tions: Description and classification according to BI-RADS 5th Edition”, Revista Chilena de Radiología, vol. 22, no. 2, pp. 80-91, 2016.
  13. Priyanka and D. Kulkarni, "Digital mammography: A review on detection of breast cancer”, Int J Adv Res Comp Commun Eng, vol. 5, pp. 386-390, 2016.
  14. Wang, L. Shi, and P. A. Heng, "Automatic detection of breast cancers in mammograms using structured support vector machines”, Neurocomputing, vol. 72, no. 13-15, pp. 3296-3302, 2009.
  15. Ramani, N. S. Vanitha, and S. Valarmathy, "The pre-processing techniques for breast cancer detection in mammography images”, International Journal of Image, Graphics and Signal Processing, vol. 5, no. 5, p. 47, 2013.
  16. Naresh and S. V. Kumari, "Breast cancer detection using local binary patterns”, International Journal of Computer Applications, vol. 123, no. 16, 2015.
  17. Rejani and S. T. Selvi, "Early detection of breast cancer using SVM classifier technique”, arXiv Preprint arXiv:0912.2314, 2009.
  18. Mohamed, M. S. Mabrouk, and A. Sharawy, "Computer aided detection system for micro calcifications in digital mammograms”, Computer Methods and Programs in Biomedicine, vol. 116, no. 3, pp. 226-235, 2014.
  19. Biswas, A. Nath, and S. Roy, "Mammogram classification using gray-level co-occurrence matrix for diagnosis of breast cancer”, Proceeding of the IEEE/ICMETE, pp. 161-166, 2016.
  20. J. S. Antony and S. Ravi, "A new approach to determine the classification of mammographic image using K-means clustering algorithm”, International Journal of Advancements in Research and Technology, vol. 4, no. 2, pp. 40-44, Feb. 2015.
  21. Raman, P. Sumari, H. Then, and S. A. K. Al-Omari, "Review on Mammogram Mass Detection by MachineLearning Techniques”, International Journal of Computer and Electrical Engineering, vol. 3, no. 6, p. 873, 2011.
  22. Hiremath and S. Prasannakumar, "Automated evaluation of breast cancer detection using svm classifier”, International Journal of Computer Science Engineering and Information Technology Research, vol. 5, no. 1, pp. 11-20, 2015.
  23. Aličković and A. Subasi, "Breast cancer diagnosis using GA feature selection and rotation forest”, Neural Computing and Applications, vol. 28, no. 4, pp. 753-763, 2017.
  24. Olfati, H. Zarabadipour, and M. A. Shoorehdeli, "Feature subset selection and parameters optimiza‌tion for support vector machine in breast cancer diagnosis”, Proceeding of the IEEE/ICIS, pp. 1-6, 2014.
  25. Moghbel, C. Y. Ooi, N. Ismail, Y. W. Hau, and N. Memari, "A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammo­graphy”, Artificial Intelligence Review, pp. 1-46, 2019.
  26. Ciecholewski, "Microcalcification segmentati­on from mamm­ograms: A morphological approach”, Journal of Digital Imaging, vol. 30, no. 2, pp. 172-184, 2017.
  27. Kaur, G. Singh, P. Kaur, “Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification”, Informatics in Medicine Unlocked, vol. 16, Article Number: 100239, 2019.
  28. Kalteh, P. Zarbakhsh, M. Jirabadi, and J. Addeh, "A research about breast cancer detection using different neural networks and K-MICA algorithm”, Journal of Cancer Research and Therapeutics, vol. 9, no. 3, p. 456, 2013.
  29. Chen, X. Yang and Y. Tian, "Discriminative hierarchical K-means tree for large-scale image classification", IEEE Trans. on Neural Networks and Learning Systems, vol. 26, no. 9, pp. 2200-2205, Sept. 2015.
  30. جوادی حمیدرضا, پورقاسم حسین، "طبقه­بندی ضایعه­های پوستی از روی تصاویر درموسکپی با استفاده از ویژگی­های رنگ و شکل"، روش­های هوشمند در صنعت برق، سلا: 8، ش.: 29، ص.: 33-40،
  31. Valvano et al., "Evaluation of a deep convol­utional neural network method for the segmentation of breast microcalcifications in mammography imaging”, Proceeding of the EMBEC, pp. 438-441, 2017.
  32. ارجمند امیر، مشگینی سعید، افروزیان رضا، "آشکارسازی توده سرطانی پستان به کمک شبکه عصبی کانولوشنی در تصاویر ام.آر.آی"، پردازش سیگنال پیشرفته، سال: 3، ش.: 2، ص.: 109-117، 1398.
  33. Velikova, I. Dutra, and E. S. Burnside, "Automated diagnosis of breast cancer on medical images”, Foundations of Biomedical Knowledge Representation, vol. 9521, pp. 47-67, 2015.
  34. -L. Chen, B. Yang, G. Wang, S.-J. Wang, J. Liu, and D.-Y. Liu, "Support vector machine based diagnostic system for breast cancer using swarm intelligence”, Journal of Medical Systems, vol. 36, no. 4, pp. 2505-2519, 2012.
  35. موسوی­راد سیدجلال­الدین، ابراهیم­پورکومله حسین، "آستانه­گذاری بهینه چندسطحی تصویر با استفاده از الگوریتم بهینه­سازی مبتنی بر یادگیری و تدریس"، مجله ماشین بینایی و پردازش تصویر، سال: 2، ش.: 2، ص.: 51-62،
  36. F. Otoom, E. E. Abdallah, and M. Hammad, "Breast Cancer Classification: Comparative Performance Analysis of Image Shape-Based Features and Microarray Gene Expression Data," International Journal of Bio-Science & Bio-Technology, vol. 7, no. 2, pp. 37-46, 2015.
  37. Sangeetha and K. S. Murthy, "A novel approach for detection of breast cancer at an early stage by identification of breast asymmetry and microcalcificati­o­n cancer cells using digital image processing techniques”, Proceeding of the IEEE/I2CT, pp. 593-596, 2017.
  38. Chen, A. Oliver, E. Denton, C. Boggis, and R. Zwiggelaar, "Classification of microcalcification clusters using topological structure features”, Medical image understanding and analysis, pp. 37-42, 2012.
  39. Gc, R. Kasaudhan, T. K. Heo, and H. D. Choi, "Variability measurement for breast cancer classificat­ion of mammographic masses”, Proceedings of the ACM, pp. 177-182, 2015.
  40. Kekre, T. K. Sarode, and S. M. Gharge, "Tumor detection in mammography images using vector quantization technique”, International Journal of Intelligent Information Technology Application, vol. 2, no. 5, pp. 237-242, 2009.
  41. Urooj, S. P. Singh, and A. Ansari, "Computer-aided detection of breast cancer using pseudo zernike moment as texture descriptors”, Sensors and Image Processing: Springer, pp. 85-92, 2018.
  42. Cai et al., "Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms", Computational and mathematical methods in medicine, vol. 2019, Article ID: 2717454, pp. 1-10, 2019.
  43. Valvano et al., "Evaluation of a Deep Convolutional Neural Network method for the segmentation of breast microcalcifications in Mammography Imaging," in EMBEC & NBC 2017: Springer, 2017, pp. 438-441.
  44. Bhattacharya and A. Das, "Fuzzy logic based segmentation of microcalcification in breast using digital mammograms considering multiresolution," in International Machine Vision and Image Processing Conference (IMVIP 2007), 2007, pp. 98-105: IEEE.
  45. Lagzoulit and y.Elkettani,"A New Morphology Algorithm for Microcalcifications Detection in Fuzzy Mammograms Images", International Journal of Engineering Research & Technology (IJERT) Vol. 3 Issue 1, January – 2014.
  46. Rampun, H. Wang, B. Scotney, P. Morrow, and R. Zwiggelaar, "Classification of mammographic microcalcification clusters with machine learning confidence levels”, Proceeding of the IWBI, vol. 10718, Article Number: 107181B, July 2018.
  47. Zheng, C. Yang, H. Wang, "Enhancing breast cancer detection with recurrent neural network", Proceeding of the Mobile Multimedia/Image Processing, Security, and Applications, vol. 11399, Article Number 113990C, April 2020