1[ امیر ارجمند، سعید مشگینی، رضا افروزیان «آشکار سازی توده سرطانی پستان به کمک شبکه عصبی کانولوشنی در تصاویر ام.آر. آی» پردازش سیگنال پیشرفته، جلد 3، شماره 2، پاییز و زمستان 1398.
]2[ آذر محمدزاده، حامد آگاهی «بازشناسی ارقام دستنویس فارسی مبتنی بر ترکیب ماشینهای بردار پشتیبان به روش فازی نوع دو بازهای» پردازش سیگنال پیشرفته، جلد ۴، شماره ۲، پائیز و زمستان ۱۳۹۹، صفحات ۲62-251.
[3] P. Grassberger and I. Procaccia, “Measuring the Strangeness of Strange Attractors,” Physica D:Nonlinea Phenomena, vol. 9, no. 1, pp. 189-208, 1983.
[4] S. B. Fox, K. C. Gatter, R. D. Leek, A. L. Harris, J. Bliss, J. L. Mansi, and B. Gusterson, “Association of tumor angiogenese with bone marow micromeetastase in breast cancer patiients,” journal of the National center Institute, 1997.
[5] R. C. Gonzealez, and R. E. Woods, Digital Image Processing, 2nd ed., Prentice-Hall, Inc., 2002.
[6] G. Schaefer, S. Y. Zhu, and B. Jones, “An image retrieval approach for thermal medical images,” Proceedings of 8th Medical Image Understanding and Analysis, pp. 181-183, 2004
[7] Woods, R. C. G. a. R. E., Digital Image Processing, Prentice Hall, 2007.
[8] Kaihua Zhang a, L. Z. a., Huihui Song b, Wengang Zhou. Active contours with selective local or global segmentation: A new formulation and level set method. Image and Vision Computing., 2008.
[9] Mahnaz EtehadTavakol, C. L., Saeed Sadri, E.Y. K. Ng. Analysis of Breast Thermography Using Fractal Dimension to Establish Possible Difference between Malignant and Benign Patterns. Healthcare Engineering, 27-43, 2010.
[10] HosseinGhayoumizadeh. Distinguish breast cancer based on thermal features in infrared images. researchgate. 2011.
[11] N. Selvarasu, A. N., and N. Nandhitha. Effective Representation of Non-Uniformity and Asymmetry in Breast Thermographs using Statistical Parameters on Histograms of Wavelet Coefficients for Cancer Detection. European Journal of Scientific Research, 80, 10-19, 2012.
[12] B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, J. Philip, “Medical applications of infrared thermography: A review,” Infrared Physics & Technology, vol. 55, no. 4, pp. 221-235, 2012.
[13] T. B. Borchartt, A. Conci, R. C. F. Lima, R. Resmini, and A. Sanchez, “Breast thermography from an image processing viewpoint: A survey,” Signal Processing, vol. 93, no. 10, pp. 2785-2803, 2013.
[14] T. Banerjee, “Day or night Activity Recognition From Video Using Fuzzy Clustering Techniquew,” IEEE Transaction on Fuzzy systems, vol. 22, no. 3, pp. 483-493, 2014.
[15] M. Fatemeh Khosravi-Farsani, D. H. E.-K. Fully automatic breast segmentation of thermal images in order to aid diagnosis automatic breast cancer detection., 2014.
[16] Calder´on-Contreras, J. D., Chac´on-Murgu´ıa, M.I., Villalobos-Montiel, A.J.,Ortega-M´aynez.. A fuzzy computer aided diagnosis system using breast thermography. IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015.
[17] Gogoi, U.R., Majumdar, G., Bhowmik, M.K., Ghosh, A.K., Bhattacharjee, D. Breast abnormality detection through statistical feature analysis using infrared thermograms, in: International Symposium on Advanced Computing and Communication (ISACC), IEEE. pp. 258–265, 2015.
[18] Lessa, V., Marengoni, M., Applying artificial neural network for the classification of breast cancer using infrared thermographic images, in: International
Conference on Computer Vision and Graphics, Springer. pp. 429–438., 2016.
[19] Sayed, G. I., Soliman, M., & Hassanien, A. E. Bio-inspired Swarm Techniques for Thermogram Breast Cancer Detection. springer International Publishing, 2016.
[20] Gogoi, U.R., Bhowmik, M.K., Ghosh, A.K., Bhattacharjee, D., Majumdar,G., 2017. Discriminative feature selection for breast abnormality detection and accurate classification of thermograms, in: 2017 International Conference on Innovations in Electronics, Signal Processing and Communication.
[21] Gehad Ismail Sayed, Alaa Tharwat, Aboul Ella Hassanien,2018. Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Springer Science+Business Media.
[22] Sathish, D., Kamath, S., Prasad, K., Kadavigere, R., 2019. Role of normalization of breast thermogram images and automatic classification of breast cancer. The Visual Computer 35, 57–70.
[23] Singh, D., & Singh, A. K.. Role of image thermography in early breast cancer detection- Past, present and future. Computer Methods and Programs in Biomedicine, 183, 105074, 2020.
[24] Sánchez-Ruiz , D., Olmos-Pineda, Ivan,Olvera-López, J. Arturo. Automatic region of interest segmentation for breast thermogram image classification. Pattern Recognition Letters, 135, 72-81, 2020..
[25] Roberto, G. F., Lumini, A., Neves, L. A., & do Nascimento, M. Z. (2021). Fractal Neural Network: A new ensemble of fractal geometry and convolutional neural networks for the classification of histology images. Expert Systems with Applications, 166, 114103.