استخراج رگ از تصاویر شبکیه چشم مبتلا به رتینوپاتی دیابتی با استفاده از روشی مبتنی بر ساختارشناسی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

چکیده

دیابت، نوعی بیماری شایع در جهان است. اولین عضوی که معمولاً دچار آسیب می‌شود؛ چشم می‌باشد. رتینوپاتی دیابتی، به معنی آسیب به شبکیه است که شامل تغییرات عروق خونی شبکیه است و می‌تواند به خونریزی، نشت مایع و یا تحریف دید منجر شود. جداسازی رگ‌های خونی از اولویت‌های تشخیص بیماری‌های شبکیه است. عکس‌برداری از شبکیه نیازمند استفاده از سیستم نوری پیچیده‌ای به نام دوربین فونداس یا عمقی است. دوربین عمقی، یک دوربین دیجیتال معمولی است که به‌منظور تهیه تصاویر از شبکیه مورد استفاده قرار می‌گیرد، برخلاف دستگاه‌های ته‌چشم‌بین، این دستگاه‌ها امکان ذخیره داده‌ها را نیز فراهم می‌کنند. در این مقاله، روشی برای استخراج رگ‌های خونی از تصویر شبکیه مبتنی بر ساختارشناسی (مورفولوژی) ارائه شده است. رگ‌ها بخشی هستند که باید قبل از تشخیص ضایعه‌های رتینوپاتی دیابتی از تصویر حذف شوند. در ابتدا برای بهبود کیفیت از عملگرهای مورفولوژی بر روی تصویر شبکیه رنگی استفاده می‌شود. سپس، با روش‌های مورفولوژی، دیسک نوری از تصویر حذف می‌گردد. سپس، رگ‌های خونی تصویر شبکیه با استفاده از دو الگوریتم مجزا استخراج می‌شوند. با ترکیب این دو الگوریتم، رگ‌های خونی با جزئیات بیشتری استخراج می‌گردند. در نهایت با استفاده از فیلتر میانه، نویز احتمالی حذف می‌شود و رگ‌های خونی با دقت بیشتری استخراج می‌شوند. الگوریتم پیشنهادی این مقاله بر روی تصاویر پایگاه داده Drive مورد ارزیابی قرار گرفته و نتایج مناسبی حاصل شده است. مقادیر متوسط اختصاصیت، حساسیت و صحت روش ارائه‌شده به‌ترتیب 0.98، 0.751 و 0.960 می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vessel Extraction of Retinal Images of Diabetic Retinopathy Using A Morphology-based Algorithm

نویسندگان [English]

  • Z. Asgharzadeh Bonab
  • S. Meshgini
Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Diabetes is a common disease in the world. The first member that is usually damaged is the eye. Diabetic retinopathy is a diabetic disorder and occurs due to changes in the blood vessels of the retina. Extracting blood vessels is initial step for diagnosis of retina problems. Imaging of Retina needs some special cameras called fundus. It is a digital camera that captures retina images ad is capable to save them. The purpose of this paper is to provide a method for the diagnosis of blood vessels based on morphology on retina images. After converting a color image to a gray scale one and improving the quality, morphological operators are used to remove the optical disk from the image. Then, blood vessels are extracted from the retina image by two different methods. Combining these two methods gives more detailed results. Possible noise is then removed using median filters. Finally, the results are combined and the blood vessels are extracted. The proposed algorithm has been evaluated over the images from the Drive database. The experimental results shows the effectiveness of our proposed method. The average result of specificity, sensitivity and accuracy are 0.98, 0.751 and 0.960, respectively.

کلیدواژه‌ها [English]

  • Retina image
  • blood vessels
  • diabetic retinopathy
  • vessel extraction
  • morphology
[1] ص. ایراندوست پاکچین، س. مشگینی، «بازشناسی چهره با استفاده از آنالیز تفکیک خطی بر پایه موجک‌های هار و گابور و ماشین بردار پشتیبان»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 4، صفحات 1317-1327، 1396.
[2] ر. صادقی، ف. ابدالی محمدی، «ارائه یک روش یادگیری ویژگی ترکیبی مبتنی بر الگوریتم شبیه‌سازی تبرید و برنامه‌نویسی ژنتیک»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 1، صفحات 127-136، 1397.
[3] ط. اکبرپور، س. دانشور، «افزایش کیفیت ادغام تصاویر موجک PET و MRI با استفاده از ترکیب گابور و مدل شبکیه»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، صفحات 23-35، 1394.
[4] S. Aruchamy, P. Bhattacharjee and G. Sanyal, "Automated Glaucoma Screening in Retinal Fundus Images," International Journal of Multimedia and Ubiquitous Engineering, Vol. 10, No. 9, pp.129-136, 2015.
[5] C. Kirbas, F. Quek, "A Review of Vessel Extraction Techniques and Algorithms," ACM Computing Surveys, 36 (2), pp. 81–121, 2004.
[6] T. Teng, M. Lefley, D. Claremont, "Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy," Med Biol Eng Comput, 40 (1), pp. 2-13, 2002.
[7] S. Jiméneza, P. Alemany, I. Fondón, A. Foncubierta, B. Achab and C. Serrano, "Automatic detection of vessels in color fundus images," ARCH SOC ESP OFTALMOL, 85 (3), pp. 103-109, 2010.
[8] Z. Fan, J. Lu, W. Li, "Unsupervised Blood Vessel Segmentation of Fundus Images Based on Region Features and Hierarchical Growth Algorithm," published 26 Mar, 2017.
[9] T. Mapayi, S. Viriri, and J. R. Tapamo, "Comparative Study of Retinal Vessel Segmentation Based on Global thresholding Techniques Computational and Mathematical Methods in Medicine, volume 2015, Article ID 895267, 15 pages.
[10] C. K. Subbaraya, A. Geet D’sa, T. V. Manohar, B. R. Nanjesh, "Novel Approach for Extraction of Blood Vessels using Morphology and Filtering Techniques", International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016.
[11] D. Youssef, N. H. Solouma,''Accurate detection of blood vessels improves the detection of exudates in color fundus images,'' Computer Methods and Programs in Biomedicine, 108 (3), pp. 1052-1061, 2012.
[12] N. Khdhair El abbadi, E. Al-Saadi, "Blood vessels extraction using mathematical morphology," Journal of Computer Science 9 (10), pp. 1389-1395, 2013.
[13] A. M. Mendonca and A. Campilho, "Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction," IEEE Transactions on Medical Imaging, vol. 25, pp. 1200–1213, 2006.
[14] M. Niemeijer, J. Staal, B. Ginneken, M. Loog, and M. Abramoff, "Drive: Digital retinal images for vessel extraction," Website: http://www.isi.uu.nl/Research/Databases/DRIVE, 2004. Last accessed: May, 2015.
[15] E. D. Pisano, S. Zong, B. M. Hemminger, M. DeLuca, R. E. Johnston, K. E. Muller, M. P. Braeuning, and S. M. Pizer, "Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms," Digital Imaging, vol. 11, no. 4, pp. 193-200, 1998.
[16] C. Gonzalez, A. Rafael, and B. Richard, E.Woods, Digital Image Processing, Third edition, 2002.
[17] J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, "Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification," Medical Imaging, IEEE Transactions on, vol. 25, pp. 1214-1222, 2006.
[18] A. M. Mendonca and A. Campilho, "Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction," Medical Imaging, IEEE Transactions on, vol. 25, pp. 1200-1213, 2006.
[19] C. A. Lupascu, D. Tegolo, and E. Trucco, "FABC: Retinal Vessel Segmentation Using AdaBoost," Information Technology in Biomedicine, IEEE Transactions on, vol. 14, pp. 1267-1274, 2010.
[20] Atefeh Sadat Sajadi and Seyed Hojat Sabzpoushan," A New Seeded Region Growing Technique for Retinal Blood Vessels Extraction," J Med Signals Sens, v. 4(3); Jul-Sep 2014.
[21] Zafer Yavuz and Cemal Köse," Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised," Journal of Healthcare Engineering,volume 2017, Article ID 4897258, 12 pages
[22] Bankhead, P., Scholfield, C. N., McGeown, J. G., & Curtis, T. M,Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE, 7(3), e32435. (2012).
[23] Nogol MemariEmail authorAbd Rahman RamliM. Iqbal Bin SaripanSyamsiah MashohorMehrdad Moghbel,"Retinal Blood Vessel Segmentation by Using Matched Filtering and Fuzzy C-means Clustering with Integrated Level Set Method for Diabetic Retinopathy Assessment," Journal of Medical and Biological Engineering,pp 1–19.