[1] M. Hamilton, “Development of a rating scale for primary depressive illness”, Br. J. Soc. Clin. Psychol., vol. 6, No. 4, pp. 278-296, 1967.
[2] S. Holm, “A simple sequentially rejective multiple test procedure”, Scand. J. Statist., vol. 6, No. 1, pp. 65-70, 1979.
[3] F. Ebrahimi, M. Mikaeili, E. Estrada, and H. Nazeran, "Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients", 30th Annual International IEEE EMBS Conference, Vancouver, pp. 1151-1154, 2008.
[4] N. Schaltenbrand, R. Lengelle, M. Toussaint, R. Luthringer, G. Carelli, A. Jacqrnin, E. Lainey, A. Muzet, and J. P. Macher, "Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients", Sleep, Vol. 19, No.1, pp. 26-35, 1996.
[5] S. Holm, “A simple sequentially rejective multiple test procedure”, Scand. J. Statist., vol. 6, No. 1, pp. 65-70, 1979.
[6] E. Oropesa, H. L. Cycon, M. Jobert, “Sleep Stage Classification using Wavelet Transform and Neural Network”, International Computer Science Institute (ICSI), 1999.
[7] M. Kiymik, M. Akin, A, Subasi, “Automatic recognition of alertness level by using wavelet transform and artificial neural network”, J. Neuroscience Methods, vol.139, No. 1, pp.231-240, 2004.
[8] H. Yu, H. Lu, T. Ouyang, H. Liu, and B. Lu, "Vigilance detection based on sparse representation of EEG" , Conf. Proc. IEEE Eng. Med. Biol. Soc. ,pp. 2439-2442, 2010.
[9] S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, and P.R. White, “Signal processing techniques applied to human sleep EEG signals— A review,” Biomed Signal Process Control, vol. 10, No. 1, pp 21-33, 2014.
[10] K. Samieea, P. Kov´acsb, S. Kiranyaza, M. Gabbouja, T. Saram¨aki, "Sleep stage classification using sparse rational decomposition of single channel EEG records", Signal Processing Conference (EUSIPCO), pp. 1905-1909, 2015.
[11] H. T. Ocbagabir, K. A. I. Aboalayon, M. Faezipour, "Efficient EEG analysis for seizure monitoring in epileptic patients," Systems, Applications and Technology Conference (LISAT), IEEE Long Island, pp.1-6, May 2013.
[12] K. Aboalayon, H. Ocbagabir, and M. Faezipour, "Efficient Sleep Stage Classification Based on EEG Signals", Systems, Applications and Technology Conference (LISAT), 2014.
[13] H. Liu, H. Yu, Q. Ren, H. Lu, "Estimate vigilance level in driving simulation based on sparse representation", International Conference on Machine Learning and Cybernetics (ICMLC) pp.1111-1115, 2010.
[14] C. Vural, and M. Yildiz, " Determination of sleep stage separation ability of features extracted from EEG signals using Principle component analysis", J. Med. Syst., Vol. 34, 83-89, 2010.
[15] M. Jobert, H. Escola E. Poiseau, p. Gaillard, "Automatic analysis of sleep using two parameters based on principal component analysis of electroencephalography spectral data", Biological Cybernetics, Vol. 71, No. 3, pp. 197-207, 1994.
[16] A. Subasi, “Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients”, Expert Systems with Applications, vol. 28, No. 1, pp. 701–711, 2005.
[17] Vatankhah, M.; Akbarzadeh-T, M-R; Moghimi, A., "An intelligent system for diagnosing sleep stages using wavelet coefficients," International Joint Conference on Neural Networks (IJCNN), pp. 18-23, 2010.
[18] Faezeh Movahedi, James L. Coyle, Ervin Sejdi´, " Deep belief networks for electroencephalography: A review of recent contributions and future utlooks", IEEE Journal of Biomedical and Health Informatics, Vol. 22, no. 3, pp. 642-652, 2018
[19] J. Zhang, Y. Wu, J. Bai, and F. Chen, "Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers", Computer Methods and Programs in Biomedicine, Vol. 38, No. 4, pp. 2016.
[20] M. Langkvist, L. Karlsson, and A. Loutfi, "Sleep stage classification using unsupervised feature learning", Advances in Artificial Neural Systems, Vol. 1, no. 1, pp. 1-9, 2012.
[21] Kunyang Li , Weifeng Pan , Qing Jiang , Guanzheng Liu, "A Method to Detect Sleep Apnea based on Deep Neural Network and Hidden Markov Model using Single-Lead ECG signal", Neurocomputing, Vol. 294, no. 1, pp. 94-101, 2018.
[22] K. Pillay, A. Dereymaeker, K. Jansen, G. Naulaers, S. V. Huffel, and M. D. Vos," Automated EEG sleep staging in the term-age baby using a generative modelling approach", Journal of Neural Engineering, Vol. 15, no. 1, pp. 1-13, 2018.
[23] International Database PhysioNet Sleep Recordings: http://www.physionet.org.
[24] Y. Zhang and L. E. Ghaoui, " Large-Scale Sparse Principal Component Analysis with Application to Text Data", The Neural Information Processing Systems Conference (NIPS), Granada, Spain, December 2011.