[1] Y.-Q. Shi, X. Li, X. Zhang, H.-T. Wu, and B. Ma, “Reversible data hiding: advances in the past two decades,” IEEE Access, vol. 4, pp. 3210-3237, 2016.
[2] S. Xiang, and X. Luo, “Reversible data hiding in homomorphic encrypted domain by mirroring ciphertext group,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 11, pp. 3099-3110, Nov. 2018.
[3] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible data hiding in encrypted images by reserving room before encryption,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 3, pp. 553-562, Mar. 2013.
[4] Z. Yin, Y. Xiang, and X. Zhang, “Reversible data hiding in encrypted images based on multi-MSB prediction and huffman coding,” IEEE Transactions on Multimedia, Aug. 2019.
[5] Y.-C. Chen, T.-H. Hung, S.-H. Hsieh, and C.-W. Shiu, “A new reversible data hiding in encrypted image based on multi-secret sharing and lightweight cryptographic algorithms,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 12, pp. 3332-3343, Dec. 2019.
[6] X. Zhang, J. Long, Z. Wang, and H. Cheng, “Lossless and reversible data hiding in encrypted images with public-key cryptography,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 9, pp. 1622-1631, Sep. 2016.
[7] X. Cao, L. Du, X. Wei, D. Meng, and X. Guo, “High capacity reversible data hiding in encrypted images by patch-level sparse representation,” IEEE Transactions on Cybernetics, vol. 46, no. 5, pp. 1132-1143, May, May 2016.
[8] C.-W. Shiu, Y.-C. Chen, and W. Hong, “Encrypted image-based reversible data hiding with public key cryptography from difference expansion,” Signal Processing: Image Communication, vol. 39, pp. 226-233, Nov. 2015.
[9] P. Puteaux, and W. Puech, “An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 7, pp. 1670-1681, Jul. 2018.
[10] A. Mohammadi, and M. Nakhkash, “Reversible data hiding in encrypted images using local difference of neighboring pixels,” arXiv preprint arXiv:1907.05123, 2019.
[11] S. Yi, and Y. Zhou, “Separable and reversible data hiding in encrypted images using parametric binary tree labeling,” IEEE Transactions on Multimedia, vol. 21, no. 1, pp. 51-64, Jan. 2019.
[12] D. Xu, and R. Wang, “Separable and error-free reversible data hiding in encrypted images,” Signal Processing, vol. 123, pp. 9-21, Jun. 2016.
[13] Z. Yin, B. Luo, and W. Hong, “Separable and error-free reversible data hiding in encrypted image with high payload,” The Scientific World Journal, vol. 2014, Apr. 2014.
[14] W. Zhang, K. Ma, and N. Yu, “Reversibility improved data hiding in encrypted images,” Signal Processing, vol. 94, no. 1, pp. 118-127, Jan. 2014.
[15] F. Huang, J. Huang, and Y.-Q. Shi, “New framework for reversible data hiding in encrypted domain,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 12, pp. 2777-2789, Dec. 2016.
[16] H. Ge, Y. Chen, Z. Qian, and J. Wang, “A high capacity multi-level approach for reversible data hiding in encrypted images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 8, pp. 2285 - 2295, Aug. 2019.
[17] X. Zhang, “Commutative reversible data hiding and encryption,” Security and Communication Networks, vol. 6, no. 11, pp. 1396-1403, 2013.
[18] X. Zhang, “Separable reversible data hiding in encrypted image,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 826-832, Apr. 2012.
[19] J. Zhou, W. Sun, L. Dong, X. Liu, O. C. Au, and Y. Y. Tang, “Secure reversible image data hiding over encrypted domain via key modulation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 3, pp. 441-452, Mar. 2016.
[20] Z. Qian, and X. Zhang, “Reversible data hiding in encrypted images with distributed source encoding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 4, pp. 636-646, Apr. 2016.
[21] X. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal Processing Letters, vol. 18, no. 4, pp. 255-258, Apr. 2011.
[22] W. Hong, T.-S. Chen, and H.-Y. Wu, “An improved reversible data hiding in encrypted images using side match,” IEEE Signal Processing Letters, vol. 19, no. 4, pp. 199-202, Apr. 2012.
[23] X. Wu, and W. Sun, “High-capacity reversible data hiding in encrypted images by prediction error,” Signal Processing, vol. 104, pp. 387-400, Nov. 2014.
[24] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 3, pp. 354-362, Mar. 2006.
[25] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 890-896, Aug. 2003.
[26] A. Mohammadi, and M. Nakhkash, “Sorting methods and adaptive thresholding for histogram based reversible data hiding,” arXiv preprint arXiv:1907.05129, 2019.
[27] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible watermarking algorithm using sorting and prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 7, pp. 989-999, Jul. 2009.
[28] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS,” IEEE Transactions on Image processing, vol. 9, no. 8, pp. 1309-1324, Aug. 2000.
[29] M. Fallahpour, and M. H. Sedaaghi, “High capacity lossless data hiding based on histogram modification,” IEICE Electronics Express, vol. 4, no. 7, pp. 205-210, 2007.
[30] X. Wu, and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Transactions on Communications, vol. 45, no. 4, pp. 437 - 444, Apr. 1997.