ارائه یک راهبرد دفاعی جدید و کارا برای مقابله با حمله بیزانسی در شبکه‌های حسگر بی‌سیم

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

چکیده

ویژگی‌ها و محدودیت‌های شبکه‌های حسگر بی‌سیم باعث شده است که امنیت این شبکه‌ها با چالش‌های جدی مواجه باشد. در این مقاله یکی از رایج‌ترین حملات موجود در شبکه‌های حسگری با نام حمله بیزانسی مورد بررسی قرار می‌گیرد. با در نظر گرفتن یک شبکه حسگری با یک مرکز جمع‌آوری داده متحرک، یک روش ادغام داده بهینه پیشنهاد می‌گردد که قادر است معیار نیومن پیرسون را در یک روش خاص از ادغام داده سخت پیاده کند، به این معنی که با ثابت نگه داشتن خطای هشدار غلط، احتمال آشکارسازی را حداکثر کند. با استفاده از تحلیل‌های آماری داده‌ها، در حالت‌های مختلف از تعداد حسگرها و تعداد مهاجمین در شبکه، یک مدل بسته با سرعت قابل‌قبول برای یافتن پارامترهای روش ارائه می‌شود. سپس یک روش شناسایی مهاجمین به‌کار گرفته می‌شود که با استفاده از فاصله همینگ گزارشات هر حسگر با تصمیم نهایی، اقدام به تشخیص مهاجم می‌کند. شبیه‌سازی‌ها بهبود حاصل از اعمال روش پیشنهادی در تصمیم‌گیری و همچنین کارآیی روش تشخیص مهاجمین را نسبت به سایر روش‌های موجود به‌وضوح نمایش می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A New Efficient Defense Strategy against Byzantine Attack in Wireless Sensor Networks

نویسندگان [English]

  • M. Sharifi
  • M. Mohassel Feghhi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Wireless sensor networks’ characteristics and limitations have led to severe challenges in their security. In this paper, one of the most common attacks, named as the Byzantine attack, has been studied. A sensor network with a mobile data fusion center is considered, and an optimized data collecting method is proposed which can apply the Neyman-Pearson criterion in a particular case of hard decision making. It means that keeping the false alarm rate constant, the detection probability is maximized. Using statistical data analysis, a closed model is obtained with an acceptable speed of convergence in a various number of sensors and attackers in the network. Then a novel malicious sensor detection scheme is exploited to identify the attack strength using the Hamming distance between every sensor report and the final decision. The simulation results show the superior performance of applying the proposed method in the decision process and also the proposed attack detection method in comparison with the conventional methods.

کلیدواژه‌ها [English]

  • Byzantine Attack
  • Wireless Sensor Networks
  • Neyman-Pearson Criterion
  • Data Fusion
  • Hamming Distance
[1] C. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and challenges,” in Proceedings of the IEEE, vol. 91, no. 8, pp. 1247-1256, Aug. 2003.
[2] C. Karlof and D. Wagner, “Secure Routing in Sensor Networks: Attacks and countermeasures” In Proc. Of First IEEE International Workshop on Sensor Network Protocols and Applications, May 2003.
[3] L. Lamport, R. Shostak, M. Pease, “The Byzantine Generals Problem”, ACM Trans. Programming Languages and Systems, vol. 4, no. 3, pp. 382-401, Jul. 1982.
[4] Y. Wang, G. Attebury and B. Ramamurthy, “A survey of security issues in wireless sensor networks,” in IEEE Communications Surveys & Tutorials, vol. 8, no. 2, pp. 2-23, Second Quarter 2006.
[5] Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic, “Smart redundancy for distributed computation,” in 31st International Conference on Distributed Computing Systems (ICDCS), pp. 665 -676, Jun. 2011.
[6] P. Sridhar, A. Madni, and M. Jamshidi, “Hierarchical aggregation and intelligent monitoring and control in fault-tolerant wireless sensor net-works,” IEEE Systems Journal, vol. 1, no. 1, pp. 38-54, Sep. 2007.
[7] F. Liu, X. Cheng and D. Chen, “Insider attacker detection in wireless sensor networks,” in Proc. of IEEE Conference on Computer Commu-nications (Infocom), 2007.
[8] W. Zhang, S. K. Das and Y. Liu, “A Trust Based Framework for Secure Data Aggregation in Wireless Sensor Networks,” 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, pp. 60-69, 2006.
[9] S. Marano, V. Matta, “Distributed detection in the presence of byzantine attacks,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 16-29, Jan. 2009.
[10] E. Soltanmohammadi, M. Orooji, and M. N. Pour, “Decentralized Hypothesis Testing in Wireless Sensor Networks in the Presence of Misbehaving Nodes”, IEEE Transaction on Information Forensics and Security, vol. 8, no. 1, Jan. 2013.
[11] A. Vempaty, L. Tong, and P. K. Varshney, “Distributed inference with Byzantine data,” IEEE Signal Process. Mag., vol. 30, no. 5, pp. 65-75, Sep. 2013.
[12] R. Curtmola and C. Nita-Rotaru, “BSMR: Byzantine-resilient secure multicast routing in multihop wireless networks,” IEEE Transactions onMobile Computing, vol. 8, no. 4, pp. 445-459, Apr. 2009.
[13] Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, ”On false data injection attacks against power system state estimation: Modeling and countermeasures,” IEEE Transactions on Parallel and DistributedSystems, vol. 25, no. 3, pp. 717-729, Mar. 2014.
[14] L. Zhang, G. Ding, Q. Wu, Y. Zou, Z. Han, J. Wang, "Byzantine attack and defense in cognitive radio networks: A survey", IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1342-1363, Apr. 2015.
[15] A. A. Sharifi and M. J. Musevi Niya, “Defense Against SSDF Attack in Cognitive Radio Networks: Attack-Aware Collaborative Spectrum Sensing Approach,” in IEEE Communications Letters, vol. 20, no. 1, pp. 93-96, Jan. 2016.
[16] N. Choudhary, P. Dabas, “An Enhanced Mechanism to Detect and Prevent Byzantine Attack in Wireless Network based on CBDS,” in Journal of Network Communications and Emerging Technologies, vol. 7, no. 7, pp. 25-28, Jul. 2017.
[17] X. Ren, J. Yan and Y. Mo, “Binary Hypothesis Testing With Byzantine Sensors: Fundamental Tradeoff Between Security and Efficiency,” in IEEE Transactions on Signal Processing, vol. 66, no. 6, pp. 1454-1468, Mar. 2018.
[18] G. Mergen, Z. Qing, and L. Tong, “Sensor networks with mobile access: Energy and capacity considerations,” IEEE Transactions on Communications, vol. 54, no. 11, pp. 2033-2044, Nov. 2006.
[19] H.  Wang,  L.  Lightfoot,  and  T.  Li,  “On  PHY-layer  security  of cognitive radio: Collaborative sensing under malicious attacks,” 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1-6, Mar. 2010.
[20] M. Abdelhakim, L. E. Lightfoot, J. Ren and T. Li, “Distributed Detection in Mobile Access Wireless Sensor Network Under Byzantine Attacks,” IEEE Transactions on parallel and Distributed system, vol. 13, pp. 1045-9219. Apr. 2013.
[21] P. K. Varshney, Distributed detection and data fusion, Springer-Verlag, 1997.
[22] P.  Tan,  M.  Steinbach,  and  V.  Kumar,  Introduction  to  Data  Mining, Addison Wesley, 2006.