تداخل چندسلولی در شبکه‌های چندرله در حضور کانال‌های محوشدگی ناکاگامی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده مهندسی برق و کامپیوتر، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در این مقاله، سه پروتکل انتخاب رله برای شبکه‌های چندسلولی با چندین رله کدگشائی و ارسال که توسط چندین تداخلگر در گره‌های رله و مقصد مورد هدف قرار گرفته‌اند، پیشنهاد و تحلیل می‌شود. سه پروتکل زیر بررسی می‌شود: 1) بهترین - بدترین فرصت‌طلبانه (OBW) که در آن مقصد بهترین سیگنال بین ارسال‌های از طریق رله و مستقیم را انتخاب می‌کند. 2) ترکیب‌گر لینک مستقیم بهترین - بدترین (BWDC) که در آن مقصد ارسال‌های مستقیم و از طریق رله را با استفاده از ترکیب‌گر حداکثر نسبت ترکیب می‌کند. و 3) بهترین - بدترین فرصت‌طلبانه هیبرید (HOBW) که در آن مقصد تنها در صورتی ارسال از طریق رله را انتخاب می‌کند که ارسال مستقیم در حالت قطعی باشد. برای هر کدام از این حالات، روابط به فرم بسته برای احتمال قطع روی کانال‌های محوشدگی ناکاگامی مستقل و ناهمسان (i.n.i.d) به‌دست می‌آید. سپس مفاهیم طراحی جدیدی برای احتمال قطع در محیط‌های پرتداخل به‌دست می‌آید. در مقایسه با BWDC ،OBW و HOBW گیرنده با پیچیدگی کمتر را پیشنهاد می‌دهند. همچنین، OBW و HOBW به احتمال قطع کمتری نسبت به BWDC در محیط‌های پرتداخل دست می‌یابند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-cell Interference in Multi-Relay Networks with Nakagami-m Fading Channels

نویسنده [English]

  • E. Soleimani Nasab
Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

In this paper, three relay selection protocols for multi-cell networks with multiple decode-and-forward relays targeted by multiple interferers at the relay and the destination are proposed and analyzed. The following three protocols are considered: 1) opportunistic best-worst (OBW) where the destination selects the best signal between the direct and the relayed transmissions, 2) best-worst direct link combiner (BWDC) where the destination combines the direct and the relayed transmissions using maximum ratio combining, and 3) hybrid opportunistic best-worst (HOBW) where the destination only selects the relayed transmission when the direct transmission is in outage. For each of these, new closed-form expressions for the outage probability over independent non-identically distributed (i.n.i.d.) Nakagami-m fading channels are derived. New design insights into the outage probability in the high interference regime are obtained. Compared to BWDC, OBW and HOBW offer a lower complexity receiver. Further, we show that OBW and HOBW achieve a lower outage probability relative to BWDC in the high interference regime.

کلیدواژه‌ها [English]

  • Interference channel
  • Decode-and-forward
  • Opportunistic relaying
  • Outage probability
  • Nakagami-m fading
[1] Peter Hong, Wan-Jen Huang, Cooperative Communications and Networking. Springer, Apr 2010.
[2] C. Hoymann, W. Chen, J. Montojo, A. Golitschek, C. Koutsimanis, and X. Shen, “Relaying operation in 3GPP LTE: Challenges and solutions,” IEEE Commun. Mag., vol. 50, pp. 156–162, Feb. 2012.
[3] Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes and their achievable diversity orders,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp. 1414 –1423, Mar 2009.
[4] P. L. Yeoh, M. Elkashlan, Z. Chen, and I. B. Collings, “SER of multiple amplify-and-forward relays with selection diversity,” IEEE Transactions on Communications, vol. 59, no. 8, pp. 2078– 2083, Aug 2011.
[5] T. Duong, V. N. Q. Bao, and H.-j. Zepernick, “On the performance of selection decode-and-forward relay networks over nakagami-m fading channels,” IEEE Communications Letters, vol. 13, no. 3, pp. 172 –174, mar. 2009.
[6] G. Alexandropoulos, A. Papadogiannis, and K. Berberidis, “Performance analysis of cooperative networks with relay selection over Nakagami-m fading channels,” IEEE Signal Processing Letters, vol. 17, no. 5, pp. 441 –444, May 2010.
[7] E. Soleimani-Nasab, and M. Ardebilipour, “Multi-antenna AF two-way relaying over Nakagami-m fading channels,” Wireless Personal Communications, vol. 73, no. 3, pp. 717-729, 2013.
[8] S. Abdulhadi, M. Jaseemuddin, and A. Anpalagan, “A survey of distributed relay selection schemes in cooperative wireless ad hoc networks,” Wireless Personal Communications, pp. 1–19, Nov 2010.
[9] C. Zhong, S. Jin, and K.-K. Wong, “Dual-hop aystems with noisy relay and interference-limited destination,” IEEE Transactions on Communications, vol. 58, no. 3, pp. 764 –768, Mar 2010.
[10] H. Suraweera, H. Garg, and A. Nallanathan, “Performance analysis of two hop amplify-and-forward systems with interference at the relay,” IEEE Communications Letters, vol. 14, no. 8, pp. 692 –694, Aug 2010.
[11] D. Benevides da Costa, H. Ding, and J. Ge, “Interference-limited relaying transmissions in dual-hop cooperative networks over Nakagami-m fading,” IEEE Communications Letters, vol. 15, no. 5, pp. 503 –505, May 2011.
[12] H. Phan, T. Q. Duong, M. Elkashlan, and H.-J. Zepernick, “Beamforming amplify-and-forward relay networks with feedback delay and interference,” IEEE Signal Processing Letters, vol. 19, no. 1, pp. 16 – 19, Jan 2012.
[13] H. Suraweera, D. Michalopoulos, and C. Yuen, “Performance analysis of fixed gain relay systems with a single interferer in Nakagami-m fading channels,” IEEE Transactions on Vehicular Technology, vol. PP, no. 99, p. 1, 2012.
[14] D. Lee and J. H. Lee, “Outage probability of decode-and-forward opportunistic relaying in a multicell environment,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1925 –1930, May 2011.
[15] R. Ma, Y. Chang, H. Chen and C. Chiu, "On relay selection schemes for relay-assisted D2D communications in LTE-A systems," IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 8303-8314, Sept. 2017.
[16] M. E. Eltayeb, K. Elkhalil, H. R. Bahrami and T. Y. Al-Naffouri, "Opportunistic relay selection with limited feedback," IEEE Transactions on Communications, vol. 63, no. 8, pp. 2885-2898, Aug. 2015.
[17] E. Li, X. Wang, Z. Wu and G. Yang, "Outage performance of DF relay selection schemes with outdated CSI over Rayleigh fading channels," IET Communications, vol. 12, no. 8, pp. 984-993, 15 5 2018.
[18] Y. H. Al-Badarneh, C. N. Georghiades and M. Alouini, "Asymptotic performance analysis of the kth best link selection over wireless fading channels: an extreme value theory approach," IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6652-6657, July 2018.
[19] X. Zhang and H. Jafarkhani, "Asynchronous network coding for multiuser cooperative communications," IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 8250-8260, Dec. 2017.
[20] A. R. Heidarpour, M. Ardakani and C. Tellambura, "Generalized relay selection for network-coded cooperation systems," IEEE Communications Letters, vol. 21, no. 12, pp. 2742-2745, Dec. 2017.
[21] A. R. Heidarpour, M. Ardakani, C. Tellambura and M. Di Renzo, "Generalized user-relay selection in network-coded cooperation systems," IEEE International Conference on Communications (ICC), Shanghai, China, 2019, pp. 1-6.
[22] M. S. Bahbahani, M. W. Baidas and E. Alsusa, "Distributed multi-relay selection via political coalition formation in cooperative wireless networks," IEEE Wireless Communications and Networking Conference (WCNC), Doha, 2016, pp. 1-7.
[23] G. Karagiannidis, N. Sagias, and T. Tsiftsis, “Closed-form statistics for the sum of squared Nakagami-m variates and its spplications,” IEEE Transactions on Communications, vol. 54, no. 8, pp. 1353 –1359, Aug 2006.
[24] A. Papoulis, Probability, Random variables, and Stochastic Processes. New York: McGraw-Hill, 2002.
[25] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products, 7th ed., A. Jeffrey, Ed. Elsevier Inc., 2007.
[26] M. R. Speigel and J. Liu, Mathematical Handbook of Formulas and Tables, 3rd ed., ser. schaums outline. M. G. Hill, 2009.