[1] J. Zhou, Q. Chen, Y. Zhang, Y. Fan, and K. Da Xu, “Aspheric dielectric lens antenna for millimeter-wave imaging system,” in 2015 Asia-Pacific Microwave Conference (APMC), pp. 1-3, 2015.
[2] G. M. Rebeiz, D. P. Kasilingam, Y. Guo, P. A. Stimson, and D. B. Rutledge, “Monolithic millimeter-wave two-dimensional horn imaging arrays,” IEEE Transactions on Antennas and Propagation, vol. 38, pp. 1473-1482, 1990.
[3] C. T. Taylor, Enhancement of imagery from passive millimetre-wave systems for security scanning, Ph.D. Thesis, The University of Manchester, Manchester, UK, 2015.
[4] W.-G. Kim, N.-W. Moon, M. K. Singh, H.-K. Kim, and Y.-H. Kim, “Characteristic analysis of aspheric quasi-optical lens antenna in millimeter-wave radiometer imaging system,” Applied optics, vol. 52, pp. 1122-1131, 2013.
[5] J. Laviada, A. Arboleya-Arboleya, Y. Álvarez, B. González-Valdés, and F. Las-Heras, “Multiview three-dimensional reconstruction by millimetre-wave portable camera,” Scientific reports, vol. 7, pp. 1-11, 2017.
[6] C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4304-4310, 2016.
[7] A. Jouadé, Millimeter-wave radar imaging systems: focusing antennas, passive compressive devicefor MIMO configurations and high resolution signal processing, PhD Thesis, 2017.
[8] H. Chen, Z. Long, L. Niu, Z. Yang, J. Liu, and K. Wang, “Millimeter-wave SFCW SAR imaging system based on in-phase signal measurement with simplified transceiver,” Optics Express, vol. 28, pp. 1526-1538, 2020.
[9] N. Mohammadian, O. Furxhi, R. Short, and R. Driggers, “Performance comparison of sparse array millimeter wave imager configurations," Optics express, vol. 27, pp. 19292-19308, 2019.
[10] M. E. Yanik and M. Torlak, “Millimeter-wave near-field imaging with two-dimensional SAR data,” in Proc. SRC Techcon, 2018.
[11] M. Yanik, M. E. Yanik, D. Wang, and M. Torlak, “3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors,” in IEEE GLOBALSIP 2019, 27 November 2019.
[12] H. Hu, M. Karim, L. Ong, A. Leyman, B. Luo, T. Chiam, et al., “Millimeter wave imaging using SAR modeling,” in 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), pp. 1-3, 2013.
[13] Q. Chen, Y. Fan, J. Zhou, and K. Song, “Design of Quasi-Optical Lens Antenna for W-Band Short Range Passive Millimeter-Wave Imaging,” Journal of Computer and Communications, vol. 3, p. 93, 2015.
[14] M. Bevan, Electromagnetic Analysis of Horn Antennas in the Terahertz region, M.S. Thesis, National University of Ireland Maynooth, 2013.
[15] Q. Jinghui, Z. Zhong, L. Kai, L. Gaofei, and X. Fei, “Design and measurement of quasi-optics for millimeter wave imaging system,” in 2009 IEEE International Workshop on Imaging Systems and Techniques, pp. 132-135, 2009.
[16] C. Granet, “Profile options for feed horn design,” in 2000 Asia-Pacific Microwave Conference. Proceedings (Cat. No. 00TH8522), pp. 1448-1451, 2000.
[17] T. A. Milligan, Modern antenna design, John Wiley & Sons, 2005.
[18] J. E. McKay, D. A. Robertson, P. J. Speirs, R. I. Hunter, R. J. Wylde, and G. M. Smith, “Compact Corrugated Feedhorns With High Gaussian Coupling Efficiency and $-60;text {dB} $ Sidelobes,” IEEE Transactions on Antennas and Propagation, vol. 64, pp. 2518-2522, 2016.
[19] L. Lucci, R. Nesti, G. Pelosi, and S. Selleri, “Design of an improved profiled corrugated circular horn at 320 GHz,” Journal of electromagnetic waves and applications, vol. 18, pp. 387-396, 2004.
[20] Y. Yao, Y. Cao, Y. Liu, J. Yu, and X. Chen, “Design and implementation of THz ultra-Gaussian corrugated feed horn,” in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), pp. 1-4, 2014.
[21] J. Wang, Y. Yao, C. Yang, X. Liu, L. Qi, Z. Chen, et al., “Design of a 94 GHz compact corrugated horn with ultra-low sidelobe,” in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1359-1360, 2016.
[22] R. Gonzalo, J. M. Canales, J. Teniente, C. Del Rio, and M. Sorolla, “Measurements of a new Gaussian profile corrugated horn antenna for millimeter wave applications,” in IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 98CH36), pp. 1722-1725, 1998.
[23] R. Nesti, G. Pelosi, S. Pilia, and S. Selleri, “Design of a 67–116GHz corrugated circular horn for the ALMA radio telescope,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 565-566, 2017.
[24] A. Kishk and C.-S. Lim, “COMPARATIVE ANALYSIS BETWEEN CONICAL AND GAUSSIAN PROFILED HORN ANTENNAS-Abstract,” Journal of Electromagnetic Waves and Applications, vol. 17, pp. 599-600, 2003.
[25] T. Salimi, A. Maghoul, and A. A. Abbasid, “Design of a compact Gaussian profiled corrugated horn antenna for low sidelobe-level applications,” International Journal of Computer Theory and Engineering, vol. 5, p. 223, 2013.
[26] A. D. Olver and J. Xiang, “Design of profiled corrugated horns,” IEEE transactions on antennas and propagation, vol. 36, pp. 936-940, 1988.
[27] J. T. Vallinas, Modern corrugated horn antennas, PhD Thesis, Universidad Pública de Navarra, Pamplona, 2003.
[28] L. Shafai, S. K. Sharma, and S. Rao, Handbook of Reflector Antennas and Feed Systems Volume II: Feed Systems: Artech House, 2013.
[29] C. Granet and G. L. James, “Design of corrugated horns: A primer,” IEEE Antennas and Propagation Magazine, vol. 47, pp. 76-84, 2005.