Electromyogram Signal Compression Based on Empirical-Mode-Decomposition-Based Approximation and DCT-Based Smoothing

Document Type : Original Article

Authors

Faculty of Electrical and Robotics Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Electromyogram (EMG) signals are useful in muscle behavior assessment and have some clinical applications. Today, there is a great tendency to transmit and store long-term EMG recordings which implies the importance of EMG signal compression. In this paper, we have proposed an EMG signal compression approach based on Empirical-Mode-Decomposition-based signal approximation, Discrete-Cosine-Transform-based signal smoothing, two-dimensional signal processing, wavelet transform, and SPIHT coding. We have evaluated the compression performance of the proposed approach by two sets of measures: The compression throughput and clinical-information-preserving measures. The former include two measures of PRD and CF while the latter uses four spectral parameters as the appropriate measures.

Keywords

Main Subjects


[1] P. A. Berger, F. A. O. Nascimento, J. C. Carmoe, and A. F. Rocha, “Compression of EMG signals with wavelet transform and artificial neural networks,” Physiological Measurement, vol. 27, pp. 457-465, 2006.
[2] C. Itiki, S. S. Furuie, and R. Merletti, Compression of high-density EMG signals for trapezius and gastrocnemius muscles, BioMedical Engineering, vol.13: no.25, pp. 1-23, 2014.
[3] P. A. Berger, F. A. O. Nascimento, A. F. Rocha, and J. L. A. Carvalho, “A new wavelet-based algorithm for compression of EMG signals,” Proceedings of 29th Annual International Conference of IEEE EMBS, Lyon, France 2007.
[4] M. Mischi, C. Rabotti, and M. Cardinale, “Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies,” In: Proc. of IEEE international conference on engineering in medicine and biology society, pp. 2338-2341, 2010.
[5] R. Merletti, and P. Parker, Electromyography: engineering and noninvasive applications. Hoboken: Wiley; 2004.
[6] P. Madeleine, A. Samani, M. Zee, and U. Kersting, Biomechanical assessments in sports and ergonomics, In: Klika V, editor. Theoretical biomechanics. Rijeka: InTech; pp. 335-60, 2011.
[7] T. Hoshino, T. Suzuki, M. Tomono, M. Shimojo, R. Furusawa, and K. Mabuchi, “Development of a motion support system by using an electromyogram,” Proc IEEE Int Conf Syst Man Cybern, pp. 4432-4437, 2004.
[8] J.A. Dawley, K. B. Fite, and G. D. Fulk, “EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function,” In: Proc. of the IEEE international conference on rehabilitation robotics,.pp. 1-6, 2013.
[9] C. N. Huang, C. H. Chen, and H. Y. Chung, “Application of facial electromyography in computer mouse access for people with disabilities,” Disabil Rehabil. vol. 28, no. 4,pp. 231-237, 2006.
[10] M. Murugappan, “Electromyogram signal based human emotion classification using KNN and LDA,” In: Proceedings of the IEEE international conference on system engineering and technology,. pp. 106-110, 2011.
[11] W. C. Melo, E.e B. L. Filho, and W. S. S. Junior, “Electromyographic signal compression through image encoders and  preprocessing techniques,” Journal of Communication and Information Systems, vol. 31, no. 1, pp. 188-197, 2016.
[12] A. H. Al-Timemy, G. Bugmann, J. Escudero and N. Outram, “Classification of finger movements for the dexterous hand prosthesis control with surface electromyography,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3, pp. 608-618, 2013.
[13] P. J. Mork, and R. H. Westgaard, “Long-term electromyographic activity in upper trapezius and low back muscles of women with moderate physical activity,” J Appl Physiology, vol. 99, pp. 570-578, 2005.
[14] R. Merletti, D. Farina, and M. Gazzoni, “The linear electrode array: a useful tool with many applications,” J Electromyogr Kinesiol,vol. 13, no. 1, pp. 37-47, 2003.
[15] P. A. Lichter, E. H. Lange, T. H. Riehle, S. M. Anderson, and D. S. Hedin, “Rechargeable wireless EMG sensor for prosthetic control,” In: Proceedings of the international conference on engineering in medicine and biology society, pp. 5074-5076, 2010.
[16] E. B. L. Filho, E. A. B. da Silva, M. B. de Carvalho, W. S. S. Júnior, and J. Koiller, “Electrocardiographic signal compression using multiscale recurrent patterns,” IEEE Trans Circuits Syst I, vol. 52, no. 12, pp. 2739-2753, 2005.
[17] E. Fiorucci, G. Bucci, R. Cattaneo and A. Monaco, “The measurement of surface electromyographic signal in rest position for the correct prescription of eyeglasses,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 2, pp. 419-428, 2012.
[18] R. Merletti and P. A. Parker, Electromyography: Physiology, Engineering, and Noninvasive Applications, IEEE Press and John Wiley & Sons, New Jersy, USA, 2004.
[19] R. Merletti and D. Farina, Surface Electromyography: Physiology, Engineering, and Applications, IEEE Press and John Wiley & Sons, New Jersy, USA, 2016.
[20] M. Barbero, R. Merletti, and A. Reinfoldi, Atlas of Innervation Zones: Understanding Surface Electromyography and Its Applications, Springer-Verlag, Italia, 2012.
[21] G. Kamen and D. A. Gabriel, Essentials of Electromyography, Human Kinetics, USA, 2010.
[22] N. E. Huang and S. S. P. Shen, Hilbert–Huang Transform and Its Applications, World Scientific Publishing, 2nd Edition, 2014.
[23] J. F. Norris and D. F. Lovely, “Real-time compression of myoelectric data utilizing adaptive differential pulse code modulation,” Medical and Biological Engineering and Computing, vol. 33, no. 5, pp. 629-635, 1995.
[24] E. S. G. Carotti, J. C. De Martin, D. Farina, and R. Merletti, “Linear predictive coding of myoelectric signals,” Proc IEEE Int Conf Acoust Speech Signal Process,:629-32, 2005.
[25] E. S. G. Carotti, J. C. De Martin, R. Merletti, and D. Farina, “Compression of surface EMG signals with algebraic code excited linear prediction,” Med Eng Phys., vol. 29, pp. 253-258, 2007.
[26] A. P. Guerrero, and C. Mailhes, “On the choice of an electromyogram data compression method,” Proc IEEE Int Conf Eng Med Biol Soc.,1558-61, 1997.
[27] J. A. Norris, K. Englehart, and D. Lovely, “Myoelectric signal compression using zero-trees of wavelet coefficients,” Medical Engineering & Physics, vol. 25, no. 9, pp. 739-746, Nov. 2003.
[28] N. Jain and R. Vig, “Wavelet based vector quantization with tree code vectors for EMG Signal compression,” in Proc. of the 6th WSEAS International Conference on Signal Pprocessing, pp. 1-8, Dallas, USA, Mar. 2007.
[29] M. H. Trabuco, M. V. C. Costa, F. P. Schwartz and F. A. O. Nascimento, “Compression of S-EMG signals by transforms and spectral profile for bit allocation,” in Proc. of the Pan American Health Care Exchanges (PAHCE), pp. 1-6, Medellin, Colombia, Apr. 2013.
[30] M. H.Trabuco, M. V. C. Costa, and F. A. O. Nascimento. “S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation,” BioMed Eng OnLine, vol. 13, no. 1, pp. 1-22, 2014.
[31] E. B. L. Filho, E. A. B. Silva, and M. B. Carvalho, “On EMG signal compression with recurrent patterns,” IEEE Trans Biomed Eng., vol. 55, no. 7, pp. 1920-1923, 2008.
[32] C. Itiki, S. S. Furuie, and R. Merletti, “Compression of high-density EMG signals for trapezius and gastrocnemius muscles,” BioMedical Engineering OnLine, vol. 13, no. 1, pp. 1-25, 2014.
[33] M. V. C. Costa, J. L. A. Carvalho, P. A. Berger, A. Zaghetto, A. F. da Rocha, and F. A. O. Nascimento, “Two-dimensional compression of surface electromyographic signals using column-correlation sorting and image encoders,” In: Proceedings of the IEEE international conference on engineering in medicine and biology society, pp. 428-431, 2009.
[34] D. S. Taubman, and M. W. Marcellin. JPEG2000: image compression fundamentals. Standards and practice, Boston: Kluwer Academic Publishers; 2002.
[35] T Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra “Overview of the H.264/AVC video coding standard,” IEEE Trans Circuits Systems Video Technol., vol. 13, no. 7, pp. 560-576, 2003.
[36] W. C. Melo, E. B. L. Filho, and W. S. S. Junior, “Electromyographic signal compression based on preprocessing techniques,” In Proceedings of the IEEE international conference on engineering in medicine and biology society, pp. 5404-5407, 2012.
[37] N. M. M. Rodrigues, E. A. B. da Silva, M. B. de Carvalho, S. M. M. Faria, and V. M. M. Silva., “On dictionary adaptation for recurrent pattern image coding,” IEEE Trans Image Processing, vol. 17, no. 9, pp. 1640-1653, 2008.
[38] A. K. Jain. Fundamentals of digital image processing, Upper Saddle River: Prentice Hall; 1988.
[39] W. C. Melo, E. B. L. Filho and W. S. S. Júnior, “SEMG signal compression based on two‑dimensional techniques,” BioMedical Engineering OnLine, vol. 15, pp. 1-41, 2016.
[40] W. Colince, N. E. Pascal, and P. Ele, “Exploitation of differential pulse code modulation for compression of EMG signals by a combination of DWT and DCT”, American Journal of Biomedical Engineering, vol. 4, no. 2, pp. 25-32, 2014.
[41] J. M. Giron-Sierra, Digital Signal Processing with MATLAB Examples: Volume 1, Springer, Singapore, 2017.
[42] K. Sayood, Introduction to Data Compression, 4th Edition, Elsevier, USA, 2012.
[43] هادی گرایلو، «فشرده‌سازی تصاویر دارای درجه تفکیک مکانی بالا مبتنی بر تخمین زیرباندهای جزئیات در حوزه تبدیل موجک»، مجله بینایی ماشین و پردازش تصویر، مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 7 تیرماه 1396.
[44] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG signal analysis: detection, processing, classification and applications,” Biological Procedures Online, vol. 8, no. 1, pp. 11-35, 2006.
[45] H. Broman, G. Bilotto, and C. J. de Luca, “Myoelectric signal conduction velocity and spectral parameters: influence of force and time,” Journal of Applied Physiology, vol. 58, no. 5, pp. 1428-1437, 1985.
[46] B. Elfvinga, G. N´emetha, I. Arvidssonb, and M. Lamontagne, “Reliability of EMG spectral parameters in repeated measurements of back muscle fatigue,” Journal of Electromyography and Kinesiology, vol. 9, no. 4, pp. 235-243, 1999.
[47] S. Thongpanja, A. Phinyomark, P. Phukpattaranont and C. Limsakul, “Mean and median frequency of EMG signal to determine muscle force based on time-dependent power spectrum,” Elektronika ir Elektrotechnika, vol. 19, no. 3, pp. 51-56, 2013.