High-level decision algorithm with analysis of pupil diameter signals

Document Type : Original Article

Authors

1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

Researchers are trying to achieve the power of the human mind by implementing decision-making algorithms similar to brain function. Hierarchical decisions are complex decisions that require metacognitive reasoning mechanisms in the brain. Negative feedback, certainty, and motion strength are the parameters that play a role in shaping such decisions. In this study, in order to design a computational framework similar to brain function for intelligent systems, it will be important to understand the biology nature of high-level decision-making, using other types of data in addition to behavioral data. Since involuntary eye responses resulting from the output of psychophysical experiments are a reliable representative of the function of the neuronal mechanism in the brain, in this study addition to the analysis of behavioral data, this issue has been addressed whether it is possible to understand the dynamics of changes in high-level decisions by analyzing involuntary human data (eye signals). We found that pupil diameter size predicts the likelihood of changes in the parameters of high-level decisions, and reflects the individual's high-level decision strategy under complex conditions. Then, in order to design systems similar to brain function in complex environments, we provide a framework for hierarchical decisions.

Keywords

Main Subjects


[1]       P. R. Murphy, N. Wilming, D. C. Hernandez-Bocanegra, G. Prat-Ortega, and T. H. Donner, “Adaptive circuit dynamics across human cortex during evidence accumulation in changing environments,” Nature Neuroscience, pp. 1-11, 2021.
[2]       M. Sarafyazd, and M. Jazayeri, “Hierarchical reasoning by neural circuits in the frontal cortex,” Science, vol. 364, no. 6441, 2019.
[3]       D. Peixoto, J. R. Verhein, R. Kiani, J. C. Kao, P. Nuyujukian, C. Chandrasekaran, J. Brown, S. Fong, S. I. Ryu, and K. V. Shenoy, “Decoding and perturbing decision states in real time,” Nature, vol. 591, no. 7851, pp. 604-609, 2021.
[4]       G. M. Stine, A. Zylberberg, J. Ditterich, and M. N. Shadlen, “Differentiating between integration and non-integration strategies in perceptual decision making,” Elife, vol. 9, pp. e55365, 2020.
[5]       G. Kyriakarakos, K. Patlitzianas, M. Damasiotis, and D. Papastefanakis, “A fuzzy cognitive maps decision support system for renewables local planning,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 209-222, 2014.
[6]       J. L. Salmeron, A. Ruiz-Celma, and A. Mena, “Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes,” Neurocomputing, vol. 232, pp. 52-57, 2017.
[7]       L. Yahyaie, and S. Khanmohammadi, “A new multi-criteria decision making based on fuzzy-TOPSIS theory,” Journal of Advances in Computer Engineering and Technology, vol. 2, no. 4, pp. 39-48, 2016.
[8]       E. Daglarli, “Computational Modeling of Prefrontal Cortex for Meta-Cognition of a Humanoid Robot,” IEEE Access, vol. 8, pp. 98491-98507, 2020.
[9]       K. H. Britten, M. N. Shadlen, W. T. Newsome, and J. A. Movshon, “The analysis of visual motion: a comparison of neuronal and psychophysical performance,” Journal of Neuroscience, vol. 12, no. 12, pp. 4745-4765, 1992.
[10]    M. N. Shadlen, and W. T. Newsome, “Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey,” Journal of neurophysiology, vol. 86, no. 4, pp. 1916-1936, 2001.
[11]    L. Van Maanen, R. P. Grasman, B. U. Forstmann, M. C. Keuken, S. D. Brown, and E.-J. Wagenmakers, “Similarity and number of alternatives in the random-dot motion paradigm,” Attention, Perception, & Psychophysics, vol. 74, no. 4, pp. 739-753, 2012.
[12]    C. Strauch, L. Greiter, and A. Huckauf, “Pupil dilation but not microsaccade rate robustly reveals decision formation,” Scientific reports, vol. 8, no. 1, pp. 1-9, 2018.
[13]    A. Mognon, J. Jovicich, L. Bruzzone, and M. Buiatti, “ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features,” Psychophysiology, vol. 48, no. 2, pp. 229-240, 2011.
[14]    J. A. Lorteije, A. Zylberberg, B. G. Ouellette, C. I. De Zeeuw, M. Sigman, and P. R. Roelfsema, “The formation of hierarchical decisions in the visual cortex,” Neuron, vol. 87, no. 6, pp. 1344-1356, 2015.
[15]    R. Van den Berg, A. Zylberberg, R. Kiani, M. N. Shadlen, and D. M. Wolpert, “Confidence is the bridge between multi-stage decisions,” Current Biology, vol. 26, no. 23, pp. 3157-3168, 2016.
[16]    S. V. Shooshtari, J. E. Sadrabadi, Z. Azizi, and R. Ebrahimpour, “Confidence representation of perceptual decision by eeg and eye data in a random dot motion task,” Neuroscience, vol. 406, pp. 510-527, 2019.
[17]    A. Zylberberg, J. A. Lorteije, B. G. Ouellette, C. I. De Zeeuw, M. Sigman, and P. Roelfsema, “Serial, parallel and hierarchical decision making in primates,” Elife, vol. 6, pp. e17331, 2017.
[18]    J. A. Reggia, G. E. Katz, and G. P. Davis, “Humanoid cognitive robots that learn by imitating: Implications for consciousness studies,” Frontiers in Robotics and AI, vol. 5, pp. 1, 2018.
[19]    S. Fatahi, and H. Moradi, “A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments,” Computers in Human Behavior, vol. 63, pp. 272-281, 2016.
[20]    E. Lesage, S. E. Aronson, M. T. Sutherland, T. J. Ross, B. J. Salmeron, and E. A. Stein, “Neural signatures of cognitive flexibility and reward sensitivity following nicotinic receptor stimulation in dependent smokers: a randomized trial,” JAMA psychiatry, vol. 74, no. 6, pp. 632-640, 2017.
[21]    B. A. Purcell, and R. Kiani, “Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy,” Proceedings of the national academy of sciences, vol. 113, no. 31, pp. E4531-E4540, 2016.
[22]    W. Keung, T. A. Hagen, and R. C. Wilson, “Regulation of evidence accumulation by pupil-linked arousal processes,” Nature Human Behaviour, vol. 3, no. 6, pp. 636-645, 2019.
[23]    J. C. Van Slooten, S. Jahfari, T. Knapen, and J. Theeuwes, “How pupil responses track value-based decision-making during and after reinforcement learning,” PLoS computational biology, vol. 14, no. 11, pp. e1006632, 2018.
[24]    O. Colizoli, J. W. de Gee, A. E. Urai, and T. H. Donner, “Task-evoked pupil responses reflect internal belief states,” Scientific reports, vol. 8, no. 1, pp. 1-13, 2018.
[25]    L. C. Yan, B. Yoshua, and H. Geoffrey, “Deep learning,” nature, vol. 521, no. 7553, pp. 436-444, 2015.
[26]    X.-J. Wang, “Probabilistic decision making by slow reverberation in cortical circuits,” Neuron, vol. 36, no. 5, pp. 955-968, 2002.
[27]    K.-F. Wong, and X.-J. Wang, “A recurrent network mechanism of time integration in perceptual decisions,” Journal of Neuroscience, vol. 26, no. 4, pp. 1314-1328, 2006.
[28]    D. Vickers, “Evidence for an accumulator model of psychophysical discrimination,” Ergonomics, vol. 13, no. 1, pp. 37-58, 1970.
[29]    R. Ratcliff, “A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data,” Psychonomic bulletin & review, vol. 9, no. 2, pp. 278-291, 2002.
[30]    R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen, “The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks,” Psychological review, vol. 113, no. 4, pp. 700, 2006.
[31]    F. Majdabadi, and R. Ebrahimpour, “The role of explicit and implicit confidence in multi-stage decisions,” Advances in Cognitive Science, pp. 37, 2020.
[32]    S. Vafaei, R. Ebrahimpour, and S. Zabbah, “The Relationship Between Pupil Diameter Data and Confidence in Multi-Stage Decisions,” The Neuroscience Journal of Shefaye Khatam, pp. 70-79, 2020.
]33 [ حسن‌پور خ, سیدعربی م, دانشور س. کنترل صندلی چرخ‌دار بر پایه سیگنال‌های EEG به‌ وسیله واسط مغز و ماشین. پردازش سیگنال پیشرفته. 2017;2(1):7-15.
]34 [ مقدری م, زلفی لیقوان م, دانشور س. تشخیص تصور گفتار کلمات بازی سنگ، کاغذ، قیچی با استفاده از سیگنال های EEG. پردازش سیگنال پیشرفته. 2021:-.
[35]    R. Kiani, and M. N. Shadlen, “Representation of confidence associated with a decision by neurons in the parietal cortex,” science, vol. 324, no. 5928, pp. 759-764, 2009.
[36]    A. E. Urai, A. Braun, and T. H. Donner, "Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias," Nature Communications, vol. 8, no. 1, pp. 1-11, 2017.
[37]    K. M. Lempert, Y. L. Chen, and S. M. Fleming, "Relating pupil dilation and metacognitive confidence during auditory decision-making," PLoS One, vol. 10, no. 5, p. e0126588, 2015.
[ 38]   A. L. Filipowicz, C. M. Glaze, J. W. Kable, and J. I. Gold, "Pupil diameter encodes the idiosyncratic, cognitive complexity of belief updating," Elife, vol. 9, p. e57872, 2020.